
Constrain Your Content: Generating Better
Content With Constraint Programming

Marc Taylor

Marc Taylor
Puzzle Master
Tool Guy
Senior Developer

Big Duck Games

• Flow Free
• Classic
• Bridges
• Hexes
• Warps

• Flow Fit
• Words
• Sudoku

Flow Free

Flow Fit

Flow Fit: Sudoku

What Is Constraint Programming (CP)?

Constraint Programming, CP, “is the name given to identifying
feasible solutions out of a very large set of candidates, where
the problem can be modeled in terms of arbitrary constraints.”
(https://developers.google.com/optimization/cp)

Shift Scheduling Problems?
WEEK OF
3/20/23

ASSIGNMENT MON (AM) MON (PM) TUE (AM) TUE (PM) WED (AM) WED (PM THU (AM) THU (PM) FRI (AM) FRI (PM) SAT (AM) SAT (PM) SUN (AM) SUN (PM)

John Doe
1 0 0 0 1 0 1 0 1 0 0 0 0 1

Jane Doe
0 1 0 1 0 0 0 0 0 1 0 1 1 0

Bob Dole
1 0 1 0 0 1 0 0 0 0 1 0 0 1

Bobbi Dole
1 0 1 0 0 1 0 0 0 0 1 0 0 1

Jebediah
0 1 0 1 0 1 0 1 0 1 0 0 0 0

All employees must work exactly 5 shifts per week
Each shift needs at least one employee
No employee can work both morning and afternoon shifts on the same day

WEEKLY EMPLOYEE SCHEDULE

John Doe can't work on Tuesdays
Jane Doe cannot work with John Doe
Bob Dole can only work with Bobbi Dole
Bobbi Dole cannot work on Thursdays
Jebediah cannot work on Sunday

Constraint Programming
• Designer creates the model
• Solver runs the model quickly (So fast it got italicized)
• Focus can be placed on the design of the

model instead of optimizing the brute force

What Can CP Do For You?

Make good content

Latin Square + Slicing = Level
Content

(Latin Square)
Slicing Level

+ =

What Makes A Good Level?
1.Difficulty
2.Piece uniqueness
3.Piece variety
4.No “bad” pieces
5.Single solution

1. Difficulty

Determining Difficulty
• Combinatorial Complexity

• How many ways the pieces can be fit

• Initially Guaranteed Pieces
• How many pieces only have one slot
• Gives initial footholds into puzzle solution

2. Piece Uniqueness
• No two pieces should be

identical
• When no two pieces are

identical, many logical
solving techniques
become more apparent

3. Piece Variety
Unique Pieces,
Trivial!

Same Pieces,
Hard!

4. No “Bad” Pieces
Any block that is not fun is bad

Luckily, there is only one key
block that is generally
considered bad.

The 1x1 piece

We hates it!

5. Single Solution

How To Actually Use CP
1. Choose a Solver
2.Make A Model
3. Run the model in the solver
4. Extract the solution

CP Solvers
• Optimize running of models
• Domain Reduction
• Constraint Aggregation
• Propagation of Arithmetic Constraints
• And More!

CP Solvers
• Library added to the codebase
• Also used to make the models
• We used Google OR-Tools Original CP Solver

Parts Of A CP Model
•Variables
•Constraints
•Objectives

Variables
There is only one variable type in Google’s Original CP Solver:

IntVar
• Name
• Lower Bound (Inclusive)
• Upper Bound (Inclusive)

Constraints
These are the arbitrary constraints which the solver must
fulfill when creating a solution.

Some examples of constraints:
2x + 7y + 3z <= 50
3x - 5y + 7z <= 45
5x + 2y - 6z <= 37
x == 2y
All Different [x, y, z]

Objectives
• Optional
• Scoring function to maximize or minimize

Some examples of objectives:
Maximize 2x + 3y
Minimize x - 2z

The Decision Builder
The decision builder is the main input to the original CP solver.
It contains the following:
• vars — An array containing the variables for the problem.
• A rule for choosing the next variable to assign a value to.
• A rule for choosing the next value to assign to that variable.
(https://developers.google.com/optimization/cp/original_cp_solver#solve)

Let’s Make A Level!

Rethinking The Approach
1.Identify and add the key variables

A. What results are needed?

2.Identify and add constraints
A. What is the constraint?
B. How to apply the constraint?
C. What new variables need to be added?

Key Variables
• Each cell is a variable with

a value between 0 and 9.
• Value 0 represents an

obstacle

Constraint: All Cells Filled
• All non-obstacle cells

must be greater than 0

Defining Sudoku Regions
Each row and column are
sudoku regions

Constraint: Sudoku Region

• Each cell value is
unique in the region

• Each cell value less
than or equal to the
count of cells in the
region

Set Up The DecisionBuilder
• Pass in all of the variables we created
• Choose the solving strategy
• Assigning to a random variable
• Assigning a random value

Run The Solver

Extract The Solution

Cleaning Up

Slicing The Board

The Piece Library

Pieces Library

Piece Placements
Each piece placement will contain:

• Placement ID
• Location
• Cells the piece is on (pre-calculated)
• Piece Type

Example Output

Constraint: Fill The Board
Intermediate Variables:
PlacementsForCell[0] = SUM(placement[0], placement[6], placement[12], placement[15])

Constraints:
PlacementsForCell[0] == 1

Constraint: Piece Type Count
Intermediate Variables:
PieceTypeCount[0] = SUM(Placements[0-5])

Constraints:
PieceTypeCount[0] >= 0
PieceTypeCount[0] <= 3

Constraint: Piece Type Variety
Intermediate Variables:
PieceTypeUsed[0] = MAX(Placement[0-5])
TotalPieceTypesUsed = SUM(PieceTypeUsed[0-n])

Constraints:
TotalPieceTypesUsed >= 2
TotalPieceTypesUsed <= 4

Constraint: Initial Guaranteed Pieces
Intermediate Variables:
PieceTypeUnique[x] = (PieceTypeCount[x] == 1)
TotalPieceTypesUnique = SUM(PieceTypeUnique[0-n])

Constraints:
TotalPieceTypesUnique >= 1
TotalPieceTypesUnique <= 2

Extracting The Slices
Which placement variables are 1?

Things Not In The CP Models
• Exact combinatorial difficulty

• Factorials don’t play nicely with CP
• Piece Uniqueness

• Requires the outputs of both models
• Single Solutions

• This is a lie, this is in a CP model.

The End
Marc Taylor

Marc@BigDuckGames.com
@DarqueFlux

