
Differentiable Rendering for Scalable Asset
Pipeline in 'Honor of Kings'

Fei Ling
Timi L1 Studio
Tencent Technology, Ltd.

Frei Zhang
Timi L1 Studio
Tencent Technology, Ltd

IMPROVE PLAYER’S ENTERTAINMENT
QUALITY

Welcome, everyone! Thank you for joining us. My colleague Frei and I are exciting to
be presenting at GDC. Today, we‘ll be discussing how to use differentiable rendering
to build a scalable and intelligent game asset pipeline.

My name is Fei, and I currently working at Timi L1 Studio in Tencent, serves as a
principal engine programmer, and today Frei will also be speaking.

We‘ve had success in automatically creating a lot of high-quality LOD assets for low-
end devices using this pipeline, and we hope to share some valuable insights with you,
especially for who are interested in building their own intelligent game asset pipelines.

1

TABLE OF CONTENTS
 Overview

 Intro of Honor Of Kings

 Exploration joinery in automatic LOD assets production

 Scalable Asset Pipeline In HOK
 Hybrid differentiable rendering pipeline

 Distributable asset auxiliary production system

 Implementation Details
 Material fitting with signal precision preservation

 Differentiable material compiler

 Collaborated with other AI networks for mesh simplify, auto skeleton…

 Results & Conclusion

In this presentation, we'll be covering four topics. First, I'll give a quick
overview of Honor of Kings, the most played MOBA game in the world.

Then, I'll talk about the production challenges faced by many mobile and
multi-terminal games and share our experiences in automating the creation of
high-quality LOD assets.

[click]
After that, I will introduce our in-house game asset production system that
utilizes differentiable rendering.

[click]
My colleague will then present Implementation details for automatically
creating various types of high-quality LOD assets. He will also demonstrate
how we use this system in conjunction with other AI techniques to tackle many
really difficult tasks.

[click]
Finally, we'll summarize the key points and takeaways from the presentation.

2

Overview

I hope this will be interesting, Let’s move on

3

Honor Of Kings

 the world's most-played mobile MOBA

 One of the top social entertainment choices in China

 A leading force in China’s E-sport market

Honor of Kings is the world's most-played mobile
MOBA game. Everyone can play their styles, utilize
their skills and carry the team to victory!

Become immersed in the battlefield as you squad up
with your friends, choose from unique heroes with
amazing skills, and enjoy the extreme fun of fierce
team fights.

In 2015, Honor of Kings was released by TiMi Studio
Group in China. After years of dedicated work in
character designs, worldview narratives, and

4

gameplay upgrades, the game has become the top
social entertainment choice in China, recorded 100
million average daily active users in 2020.

4

HOK has already released

its overseas version

Yearn To Reach Global Players

Currently, we are eager to share our amazing game with international players and
friends. HOK has already released its overseas version in Brazil. we are working hard
to accelerate its globalization process. To conclude my introduction of HOK, I will
show you guys a promotional video for one minute.

5

The price of achieving popularity

Infamous fragmentation problem in mobile

games

Critical Performance

• Support various tiers of devices

• High quality game content

• Rendering scalability

Ultimate Quality

• Competitive high-quality resources on

high-end devices

• NOT set any limitation against artist

Philips elder people
mobile -199 RMB

Red Mi-599 RMB Iphone13 pro
max-8799 RMB

Huawei p50-4988 RMB

To reach a wider audience, it is important that Honor of Kings must be available on a

variety of devices, including low-end ones such as older smartphones and

[click]smartwatches.

While it might not be practical to play a MOBA game on a smartwatch, it's still

important to make sure the game performs well and has high-quality contents on

these devices.

Low-end devices often have limited memory, processing power, and graphics

capabilities, which can make it hard to maintain good performance and high-quality

content.

6

[click]

At the same time, high-end devices have more powerful hardware and usually want

to use more complex and detailed rendering effects with higher-quality resources.

Doesn’t those seem contradictory? Of course, so, in order to give players the best

possible experience on all kinds of devices, it's common in game development to use

different levels of detail (LOD) game assets. This helps to balance performance and

quality across devices with different capabilities.

6

LODs in Honor of Kings

Practices in material simplification,

mesh simplification and auto skeleton

for HOK
Fitting PBR To Unlit Mesh Simplification Addition With

Auto Skeleton

In Honor of Kings, high-quality LOD game assets are extensively used, but the
difference is many of them are generated automatically.

For material LOD, we automatically fitted the complete physically-based rendering
(PBR) shading model to a single unlit texture.

[click]
Additionally, we utilized high-quality, auto-generated, simplified LOD meshes for the
"hero moment" on some low-end devices.

[click]
To generate high-quality skeletons for those simplified meshes, we also utilized a
highly optimized auto skinning AI network with the help of differentiable rendering.

7

PBR Fitting

17
9

24
16

0

25

Game Package Size(M)

0

30

GPU Computation(%)

0

1.5

Bandwidth(G/s)

18

0.9

PBR Fitted Unlit

Performance And Quality

After using these generated LOD assets widely, we observes a significant performance
boost on various mobile devices.

For instance, even on our low-end baseline device with only a 1.3 GHz quad-core
processor and 1 GB of RAM, our game runs smoothly and without any noticeable loss
in graphics quality.

Using these LOD assets can also reduce the bandwidth usage, leading to lower heat
production and decreased power consumption.

It can also help to reduce the size of the game package, making this technique even
more beneficial.

8

Obstacles to traditional LOD pipeline
Employ LOD assets works fine but still suffers many drawbacks

Productive Issues

 Artists want to work only with one suit

of assets

 High costs in LODs’ production

Quality Issues

 Measuring LOD differences is difficult

 Outsourcing teams sometimes have

negative impacts

Automated?

Align In Quality?

High quality LOD assets are undoubtedly useful, but a traditional LOD pipeline in
game development will be facing many challenges due to the complexity.

Yes, it is complex of creating and managing multiple versions of each asset. This
process can be particularly time-consuming and resource-intensive, especially for
large and complex games.

It can also be hard to keep track of and apply changes to all the different versions of
assets.

[click]
Additionally, using artist judgement will also lead to quality inconsistencies. It will be
frustrating for both players and developers. These challenges can be especially tough
to deal with, as they require a lot of effort and resources to resolve.

9

Exploration in Auxiliary Game-Assets
Production

Era 1

Era 2

Era 3

Era 4

Traditional Rendering Technique
Storing rendering result to uv1 image space

Simplygon, Houdini

Advanced Fitting
Linear regression, least squares

Traditional battle scene Lod

generation of HOK

Traditional Artificial Intelligence
Simulated annealing, genetic algorithm

VFX effects color space conversion(HDR->LDR)

Differentiable Rendering
Differentiable rendering

project Mythal

CG Assets

LOD0 Assets

LOD1-N Assets

Our team has been working to develop a system that can automatically create high-
quality LOD assets.

This envisioned intelligent asset production pipeline would allow artists free to create
the highest-quality assets without being limited by performance. It is similar to how
they working with CG assets.

When it comes to performance, by providing the system with our performance
budget, it will automatically produce the best LOD assets that meet standards.

[click]
We have experimented with various algorithms and strategies, both common and
lesser-known, to make this vision a reality. I will share a breif retrospective on these
efforts during following pages

10

Brute Force Baking
Auto Generated LOD in “Hero Show”Auto Generated Battle Scene LOD

Lack of error quantification

Lost crucial metal material

expressiveness in PBR

Discontinuity in uv1 image space

lead SEAMS

Lack of robustness, strongly related

to specific scenes

Requiring post-modification by art

experts

Unfriendly iteration

In our initial experiment, we created textures by baking PBR materials into texture
space with a fixed viewpoint, and used them directly as LOD assets. While this
method is simple and can be useful in some fixed view scenes, it obviously has
several drawbacks.

[click]
These include a lack of error quantification, decreased expressiveness, and
discontinuities in the UV1 image space that are difficult to fix.

[click]
Additionally, this method not suitable for a wide range of scenes and requires
extensive post-modification by experts, leading to an inefficient iteration process.

11

Data Fitting & Classic AI

Original Albedo Point Sample

Least Square Fitting

Baking texture (GI, visibility…) To Vertex Use Linear Regression

 Incomplete theory 、lack of view dependent error

assessment

Not all problems can be treated as convex optimization

problems

Training Start

HDR

Loss

Optimize By
Genetic Algorithm

Fitting Result

LDR

Fitting HDR Effects With LDR Assets By Classic AI

Rendering process is not a function, lack of gradient information

Huge parameter search space, difficult to converge, lacks robustness

 In most cases, it is not as good as expert manual adjustment, usually only

used for preliminary adjustment

Linear regression models like least squares can improve the error quantification in
baking process, but they also have some sever limitations.

For example, they don't have a complete theory and can't account for view-
dependent errors. They were not work for all problems neither, as not all problems
can be reduced to convex optimizations.

[click]
Classic AI approaches like genetic algorithms haven't been very effective for rendering
tasks. Because they usually rely on searching through a large space of parameters
during rendering, which are very slow and impractical.

12

Where Lies The Key?

Quantifiable Errors

Gradient Backpropagation Ability

Optimizable Parameters

Quantifiable Errors

Gradient Backpropagation Ability

Optimizable Parameters

meshes materials shader

Rendering

Loss

Mesh、Texture Shader

Lighting、Material

？？？

Rendering Image
Space Loss

Automated, optimal parameter set
learning

High Quality Rendering Result ALOD Rendering Result B

How to make rendering as a continuous function

Let's take a moment to pause here and briefly summarize what has been said so far.

We are looking for a method. It can guide our optimization efforts through
quantifiable errors in different views.

This method should be gradient-based, allowing for quick and stable optimization of
non-convex problems such as rendering. It should also be applicable to the original
parameter sets in order to optimize them.

In a word, Our ultimate goal is to find a method that is effective and efficient in
optimizing during the rendering process.

13

Differentiable Rendering

“Physics-Based Differentiable Rendering: From Theory To Implementation”

Treat rendering process as a function

Focus on the function’s continuous

 Shading(Rasterize or Monte Carlo Method)

 Visibility

 Geometry

 Back propagate gradient though different space

 Optimizer(Adam,,,)

Now, its time to mention differentiable rendering. It is such a technique that
optimizes rendering processes using gradient-based methods.

It differentiates the rendering process based on parameters such as object color,
reflectivity, and texture, as well as ensures continuity in shading, visibility, and
geometry.

This enables the optimization of these parameters to improve the efficiency and
effectiveness of the fitting tasks during rendering.

14

Greatly Inspired By Pioneers

Mitsuba 2/3

NV Diffrast(Modeling)

“Path-Space Differentiable Rendering”

There already existed a lot of genius researches in DR. Some

important factors we need to take into account:

Accurate

Performance

Global Rendering Effects

Noise

Nowadays, differentiable rendering is a popular technique for optimizing rendering
tasks in various applications. Our work has been inspired by many pioneering works
in this field.

But In practical terms, there are several important factors to be carefully considered,
particularly in game asset productions.

[click]
First, we need an accurate rendering process that supports global effects and
maintains high performance. Specifically, methods lack of accurate are not suitable
for our needs, such as PyTorch 3D.

Additionally, we must carefully incorporate with biases to quickly achieve noise-free
rendering results. Noise-free is an essential prerequisite for gradient propagation
passes. These factors are important for optimizing the fitting tasks based on
rendering.

15

Obstacles In Practice
Huge Number Of Parameters Huge Computation Graph

𝟑 ∗ 𝟏𝟎𝟐𝟒 ∗ 𝟏𝟎𝟐𝟒 ∗ 𝟑 = 𝟗. 𝟒 ∗ 𝟏𝟎𝟔

𝟏𝟎𝟎𝟎𝟎 ∗ 𝟒 = 𝟒 ∗ 𝟏𝟎𝟒

Other Issues

How to address large scenes?

How to communicate directly with

commercial engines?

How to deal with extremely

customized materials?

How to fitting complex rendering

effects, such as multi-pass

materials, purely metallic

materials…?

How to use DR in combination

with other AI technologies?

There are other issues that should also be considered when using differentiable
rendering for game asset production.

One of the most important is performance. Generating LOD for high-quality assets
can be very resource-intensive, as it requires a lot of memory space to store fitting
parameters and gradient compute graphs.

[click]
We also need to figure out how to fit large scenes, how to communicate with
commercial engines such as unity and unreal natively, how to handle highly
customized materials, and how to integrate with other technologies. These are all
challenges we need to address.

16

Scalable Asset Pipeline In HOK

Unfortunately, there were no existing open solutions to all these issues. Therefore,
we have developed our own auxiliary production system, and have been trying to
address all of them.

17

…

…

Plugins Resource Server

…

M L Cores

…

DR Renderer(CUDA/ Python)

Task System(C+ +)

Hybrid Tasks(Importer, Trainer,
Writebacks…)

Mythal

Applications

 (Semi)Automatic high quality LODs production

 On-line game assets access service

 Optimize conveniences for neural rendering applications

Core Technologies

 Heterogeneous device simulation

 Hybrid differentiable rendering pipeline

 Distributable production system

 Full stack high quality LODs in practices(mesh simplification,

material fitting, auto skeleton…)

Auxiliary LOD System sim
u

latio
n

h
yb

rid
 D

R

d
istrib

u
tab

le

SV
B

R
D

F
reco

n
stru

ct

A
u

xiliary LO
D

 System

Last year, our team implemented Mythal. It is a project that can significantly improve
our production capacity for various high-quality LOD assets, including heroes,
cosmetics and game scenes. Mythal has a production capacity that is 30 times greater
than traditional methods.

It can produce assets with high graphics quality similar to the original PBR shading
method, but with only a 10% performance requirement in extremely fittings.

As an auxiliary production system, It offers many microservices, including online
access to our game assets. We also had used it to improve the convergence
performance of many neural rendering applications of our team. And parts of these
will be discussed further in Frei section.

[click]
Let’s looking back, Mythal consists of several core components, including a
heterogeneous simple device simulation, a hybrid differentiable rendering pipeline,
and auxiliary systems like scene and asset management and network facilities.

It also includes a hand of algorithms that support advanced fitting and simplification

18

tasks for high-quality LOD generation.

18

Hybrid Differentiable Pipeline
Deferred+ Rasterization

ray reorder

ray task

ray launch

hit info

ad eval

update ray

Wavefront Tracing

completed In progressing

Just like hybrid forward rendering, we split the rendering pipeline

into two parts. Rasterize the scene into a lightmap space buffer and

launch wavefront tracing

High performance

Easy to combine different gradient strategies

Support high order effects, such as visibility

Noise free

Our rendering pipeline includes a range of differentiable rendering techniques. One
of these is the raster method, introduced by NVidia's nvdiffrast. it is commonly used
in the game industry due to its high performance and the ability to produce noise-
free results.

We've implemented this method in the first stage of our pipeline and made some
important optimizations, that focuses on improve the efficiency in reverse rendering.
I will provide more details about this on next two pages.

In addition to the raster method, we've also included wavefront ray tracing to handle
more advanced, high-order rendering effects, particularly related to visibility. Our
pipeline is flexible and can work with other automatic gradient frameworks such as
enoki and PyTorch.

The system is designed to be highly deferred and modular, with the goal of dividing
the rendering and reverse rendering process into as many independent parts as
possible.

The deferred concept, both used in raster and raytracing pipeline, is crucial here. It

19

can significantly simplify the overall process and facilitate integration with other auto-
gradient frameworks.

Later on, I’ll demonstrate how to build an easily extensible hybrid differentiable
rendering pipeline while keeping this key point in mind.

19

Heterogeneous GPU simulation

Universal Resources

Real Devices

Virtual GPU Scriptable Raster Simulation Scriptable wave front tracing simulation

Vertex Pass Binning Pass

Tile PassTile Pass

Input Raster

Visibility Buffer

Vertex Stage

Pixel Stage

greatly inspired by existed pioneers’ work, also with many
important optimizations

Texture Space G-Buffer

Wavefront Tracing

Ray Gen

Ray Sorting

Material Sorting

Material Evaluation

We implemented both the raster and ray tracing process based on C++ and CUDA, so
that we can add any customized gradient methods at specific hardware stages. This
decision helps us working without being limited by any real device capabilities.

For instance, we have added manual gradient methods on the hardware blending and
the hardware ROP process in our simulated raster.

If our raster switches to the blend state, the visibility buffer will also record
references for extra historical information per-texel. By using these historical
information, we can manually calculate the correct gradients for blending operations.

Compared to commonly used depth peeling, our approach can improve the efficiency
of gradient backpropagation for transparent materials.

Additionally, In order to increase flexibilities and enable collaboration between
different devices. We've also developed a virtual device mechanism to let users work
only with front-end devices, and without needing to know the backend details.

This design can also bring some easier experiences for developers. They can freely

20

switch between CPU and GPU backends during the whole development. Obviously, It
is very convenance for them to debug and deploy.

20

Visibility Buffer

To support reverse rendering in

complex scenes, we first raster scene

to a visibility buffer

Split “Vertex-Raster-Pixel” stages

“Vertex” and “Pixel” stages can choose to run either on python or CUDA

Raster process write out visibility buffer

Pixel stage can creates complex effects based on the visibility buffer

Reverse rendering can integrates "auto" and "manual" gradient propagation easily

In practice, another challenge that exists in original differentiable raster is how to fit
complex scenes or models with multiple materials.

The difficulty lies in determining the correct backpropagation paths and parameter
sets.

One common solution for that is to only render parts of the same materials in
different epochs, but this can easily lead to suboptimal performance.

We have implemented a more robust method inspired by UE5's nanite. We use a
visibility buffer that includes clip space barycentric coordinates and their gradients, as
well as extra information like material identifiers.

These extra information will allow us to handle complex scenes and models by
accurately work with multiple materials in both the deferred pixel stage and the
reverse shading passes.

For this, a further detail will be discussed in the reverse rendering section.

21

Vertex Stage Rasterize

Interpolation

Post Process

Forward Rendering(Raster)

Pixel Stage

Let’s first look at these images. They illustrate the different stages of the forward
raster rendering process in our pipeline.

The process starts with the vertex stage, [click]followed by simulated rasterization
and attribute interpolation. [click]The pixel stage comes next, [click]followed by final
post-processing.

The deferred style here, allows us to implement the vertex, pixel and any other stages
in either Python or a CUDA kernel independently.

Of course, this can make the pipeline more flexible, adaptable and easy to extend
when facing different situations.

22

…

and

Reverse Rendering(Raster)

The reverse rendering process in raster pipeline focuses on how to propagate image
space loss backwards through it.

Recalling the visibility buffer, that stores the clip space gradients, and the material
identifiers.

It now can help us to determine which gradients should be used. We will then use
these information to select the appropriate compute graphs from our simulated
shader function table and then use them with other bindless resources to calculate
and backpropagate gradients correctly.

[click]
The whole process utilizes both automatic and manual differential techniques.
Because the forward rendering process is differed, it now allows for splitting and
combining of various gradients of textures, materials, and geometries, etc.

Therefore, the system’s different stages are all possible to independently calculate
and backpropagate these gradients.

23

Forward Rendering(Wave Front Tracing)

Ray generation

Ray intersection

Ray sorting

Material evaluation

Shadow ray intersection

Accumulation

Wavefront
Ray Tracing
CUDA

RasterizationRasterization
CUDA

Bits 31-10 Bits 9-0

Ray origin Ray direction

Material ID

1D space filling curve value 1D space filling curve value

Ray sorting

Wavefront 1

Wavefront 2
Wavefront 3

Wavefront 4

Wavefront 2
After Sorting

Wavefront 2
Before Sorting

Sort

Now, it’s time to move on to our deferred ray tracing pipeline, also known as
wavefront ray tracing. It is used after the raster stage.

Currently, we only use it for some specific purpose such as to fit local visibility data in
HOK. Its capabilities are still in development

Back to current page, we can find a ray generation stage initializes a extension ray
buffer at the beginning.

The next stage is ray sorting. We use space filling curves to reorder all rays for cache
consistency.

Control flow divergence during complex material evaluations should also be
eliminated. We incorporated material sorting as a key part of our coherent material
evaluation.

After the material evaluation, the integrator will decide whether to continue forward
path tracing, terminate any ray path, or generate shadow rays by selecting light
sources.

24

Wavefront ray tracing also has some favorable deferred and modular properties. It
means that we can easily separate the whole material evaluation stage apart, solving
material’s shading and reverse rendering process with the help of other auto-
differentiation frameworks.

24

Reverse Rendering(Wave Front Tracing)

d𝐼

d𝜋
= ∫

d

d𝜋
𝑓(𝒙) d𝜇(𝒙) + ∫ 𝑔(𝒙) d𝜇 (𝒙)

𝐼 = ∫ 𝑓(𝒙) d𝜇(𝒙)Path Integral

Reynolds Transport Theorem

Differential Path
Integral

Interior integral Boundary integral

𝒍𝒊𝒈𝒉𝒕 𝒑𝒂𝒕𝒉 𝒙 = (𝒙𝟎, 𝒙𝟏, 𝒙𝟐) 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒍𝒊𝒈𝒉𝒕 𝒑𝒂𝒕𝒉 𝒙 = (𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑)

𝒙𝟎

𝒙𝟐

𝒙𝟏

𝒙𝟎 𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑝𝑎𝑡ℎ 𝑠𝑝𝑎𝑐𝑒: Ω ≔ ⋃ 𝑀

𝑎𝑟𝑒𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒: d𝜇(𝒙) ≔ ∏ d𝐴(𝑥)

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑎𝑡ℎ 𝑠𝑝𝑎𝑐𝑒: 𝜕Ω

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑒𝑡: 𝑀

𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑡ℎ: 𝒙

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑟𝑒𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒: d𝜇 (𝒙)

Auto Differentiation
Explicit Boundary

Path Sampling

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑓(𝒙)

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑔(𝒙)

Reference :
Path-Space Differentiable Rendering

𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟: 𝜋

The backward computation of wavefront ray tracing uses a path-integral formulation.
Here I will only give a brief introduction

To comprehend these complicated equations, let’s just mark ‘M’ as the combination
of all object surfaces, ‘Ω’ as the path space, and ‘�̅�’ as a specific light path.

The most important idea is to separate the entire derivation into two terms based on
the Reynolds transport theorem: the derivation of the interior integral and the
derivation of the boundary integral.

The derivation of interior can be solved using conventional path tracing and auto-
differentiation. The derivation of boundary is much complex, it requires a explicit
boundary path sampling to estimate the scattering contributions on object
geometries.

The derivation theorem in path-space differentiable rendering is quite complex. I
think it may be difficult to fully explained today.

[click]

25

For those who are interested, I provide a further reference here for additional
information.

25

Auto Differential
 Pros

 Build computation graph during forward process

 Propagate gradient during forward/backward traversal of

computation graph

 Uniform form，concise calculation，able to utilize all

sorts of graph optimization algorithms

 Cons

 Huge search space for rendering problem（10^6）

 High storage requirements, low cache hit rate

 Cache access is very inefficient

Manual Differential
 Pros

 No need to store huge computation graphs

 Forward process requires only a small amount of storage

 Cache access is very efficient

 Cons

 There is no unified algorithm architecture, the form is complex,

and the optimization is difficult

 The derivation is cumbersome, and the explicit backpropagation

leads to high code complexity

Pytorch OP Pytorch OP MDMD

AD vs MD

Delving into the backpropagate process, our pipeline allows for free choice between
automatic and manual gradient propagation.

Automatic differential technique uses a compute graph for complex, diverse tasks like
material shading. It’s general and simple, especially when working with our in-house
differentiable material language compiler. But it requires a lot of memory storage and
usually be slowed down by cache misses.

[click]
On the other hand, manual gradient method uses the chain rule to calculate and
propagate gradients. It performances quit faster, so is typically used in many fixed
hardware stages like rasterization, attribute interpolation and boundary path space
sampling. But it is less general and not as elegant as automatic method.

Both approaches have their pros and cons, so it's best to use a combination of them.

26

Full Stack LODs

Auto Mesh Simplification

Auto Skinning For Low
Poly Mesh

Battle Scene Lod
Generation

Hero Show Character LOD
Generation

Spherical Visibility Baking

Preprocess

UV Layout
Optimization

Mesh Simplification

Material LODAuto Skinning

Gradient

Loss

Assets

Optimization

After completing the core components of Mythal, we have successfully used it to
build a one-stop game asset production pipeline for HOK and other games in our
studio.

Differentiable rendering is a perfect exceptional algorithmic framework. It can greatly
assist with many tasks, such as mesh simplification, material optimization, auto
skeleton generation, and animation compression.

As I mentioned before, it can also be used to optimize some precomputed data used
in conventional rendering, such as local visibility data used in HOK.

27

Notable Pitfalls

Noises When Fitting Full PBR

Poor quality in fitting extremely metallic PBR without additional tactics

worse than UE in small cylinder shapes during simplify 90% mesh out

To be honest, differentiable rendering is a powerful tool, but there are also notable
pitfalls to consider when used in practical.

The essential reason is that it is still a local minimal optimization, which can easily
resulted in noisy fittings. For instance, it is difficult to converging when fitting a full
PBR material to a single, size limited, texture if only with naïve using.

[click]
It is also difficult to fit extremely metallic materials if without additional overfitting
strategies.

[click]
Differentiable rendering is effective in Mythal for mesh simplification in many cases
but may not perform as well as traditional methods in some corner cases.

It is important to consider best practices when using it in HOK and other and
applications. My colleague Frei will now discuss these best practices with more
implementation details.

28

Detail & Case study

 Material Fitting

 Skinned Mesh Simplification

 Differentiable Material Compiler

 Asset Pipeline

Hello everyone, I'm excited to be here at GDC with Fei to share with you our
differentiable rendering system and its applications in Honor of Kings.

As Fei mentioned, our team has developed a high-performance differentiable
renderer and a scalable asset pipeline to leverage the power of differentiable
rendering. During his presentation, he gave us an overview of the system and
showcased some impressive use cases to demonstrate its capabilities.

Moving on from that, I'd like to delve deeper into some of our core system
designs(like material compiler, asset pipeline) and several detailed applications. These
are crucial to the performance and functionality of our system, and I believe these
will be interesting to you guys.

Let's get started!

29

Material Fitting

Fitting results for complex characters

PBRFitted PBRFitted Fitted PBRFittedPBR

As a mobile game developer, one of the key challenges we've encountered during
development is to provide a consistent user experience across a wide variety of
mobile devices.

So, we have adopted physically based rendering with some variations and tweaks
which are more optimal on mobile platforms (Our colleague will share more on the
core concept talk).

Though PBR brings a consistent & appealing visuals and a streamlined production
process, it also brings some challenges to the performance, especially on devices
with limited computing power.

Hence, we’re doing the material fitting to reduce the shading cost. Here are some
examples of our fitting results.

And then, let’s dive into the detail.

30

Material Fitting

Generate different camera positions,

orientations

Calculate image space loss for simplified shading

and Ground-Truth shading

Update corresponding parameters using

gradient descent

𝒙∗ = arg min 𝑙𝑜𝑠𝑠(,)
𝒙

As Fei mentioned, classic material fitting have several drawbacks, make it hard to use
in practice.

With differentiability provided by our piepline, we could perform gradient-based
optimizations and even extend it into deep neural networks.
For the sake of simplicity, let's focus on the optimization problem today.

As we know, the goal of an optimization problem is to minimize the objective
function iteratively with the help of the gradient.

Our objective function uses a screen space loss to compare the reference rendering
result and the desired fitting result, both of which are rendered by our differentiable
renderer.

By iteratively updating the fitting parameters with the guidance of the gradient, the
loss will eventually converge to a desired value. This usually means that the reference
and the fitting result will look indistinguishable.

The diagram on the right illustrates the general fitting process, which I think is

31

straightforward to understand.

So, let’s move on for a deeper look.
~~~~~~~~

Our objective is to optimize the LOD mesh shape and material parameters to closely 
resemble the visual appearance of the reference high-standard PBR-rendered model.

We begin the optimization process by initializing a parameter set that includes the 
model vertices, textures, and other relevant attributes for the LOD asset.

To optimize the LOD asset, we utilize a differentiable rendering pipeline during each 
epoch of the optimization process. This pipeline consists of a sequence of mesh 
operations, a rasterizer, and a deferred shading stage. Once the LOD asset is rendered, 
we calculate an image-space loss between the resulting image and a reference image 
that is generated by the high-standard PBR-rendered model under the same lighting 
and viewing conditions. By computing this loss, we can iteratively adjust the 
parameter set to reduce the difference between the target and reference image, 
thereby improving the overall visual fidelity of the LOD asset.

Specifically, our differentiable renderer enables us to fully differentiate the rendering 
pipeline, allowing us to calculate the gradient of the loss with respect to the 
parameters of the LOD asset, such as vertex positions and texture contents. This 
enables us to optimize these parameters and improve the visual similarity between 
the LOD asset and the reference PBR rendering image.
The diagram on the right illustrates the general pipeline for fitting the LOD asset 
parameters. The function "𝑓" represents our differentiable renderer. We can use 
𝑓(𝒙 ) to obtain the reference PBR rendering image, and 𝑓(𝒙 ) to obtain the LOD 
asset rendering image.

By utilizing image space loss, such as L1/L2 loss, we can calculate the dissimilarity 𝑧
between the reference PBR rendering image 𝑓(𝒙 ) and the LOD asset rendering 

image 𝑓(𝒙 ). We can then compute the gradient 
𝒚

. Because 𝑓 is differentiable, 

which in turn enables us to calculate 
𝒚

𝒙
. By further applying the chain rule, we can 

compute the gradient with respect to the input parameter set 𝒙 , resulting in 
𝒙

. 

We iterate over a large number of image pairs, varying the camera positions and 
orientations either randomly or with careful generation, and using an optimizer such 
as Adam, we gradually adjust the parameters of the LOD asset to match the 
appearance of the reference model. This process continues until the loss is minimized 

31



and the visual fidelity of the LOD asset is maximized.

In our applications, we typically use hundreds to thousands of epochs to fit the 
parameters.

The fitting result, which involves an LOD asset with optimized vertex positions and 
texture contents, can be rendered directly in our game.

In the following section, we will use several examples to demonstrate the 
effectiveness of our LOD asset fitting pipeline.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~

31



Material Fitting
Mythal fits the rendering results of characters from various perspectives onto a single texture, while ensuring rendering quality, to 

meet the high-performance requirements of the most demanding environments.

 The standard PBR rendering can be fit to a single texture within approximately two minutes using a 2080Ti GPU (1024 * 1024).

Original PBR Single Albedo Map Fitting Error heat map

<CLICK>This is the fitting process for one of the characters, with the original PBR 
rendering on the left, the fitting result in the middle, and a heat map display of the 
screen space difference on the right. 

You see, even with only a single texture map budget, a good rendering result can still 
be achieved through the fitting. There is no seam, most of the specular parts are 
preserved.

32



Fitting PBR to Pure Vertex Color
 Where geometric details are rich, there is less quality loss

 Where the geometry details is insufficient, we can further optimize by the second-order gradient technique

Material Fitting

<CLICK>This is another extreme example that fitting PBR onto vertex colors. Of 
course, it is not perfect, as the final quality depends on the number of vertices and 
the topology of the mesh.
 
This method is still acceptable for rendering characters when the camera is far.

33



 Interactive fitting pipeline provides artists with finetuning tools.

Visual interaction makes artists feel “everything under control”. 

Material Fitting
Interactive Material Baking

To give artists more control over the fitting process while maintaining good training 
efficiency, we provide an interactive training mode. As the video shows, 
<CLICK>
It starts with detailed scene manipulation and parameter tuning. 

<CLICK>During the training process, <CLICK>the loss and other metrics will give us an 
intuition on how it goes.

<CLICK>Artists are able to finetune the fitting result according to their profession and 
needs. 

<CLICK>We support global or local fitting in either world or texture space. <CLICK>

You can see from this example that artist is assigning more weight to a certain part of 
a model to increase its detail.

34



Support Different UV Layout

 Colors stored with uv0 coordinates

 Colors stored with uv1 coordinate

 UV0 store brightness + UV1 store color

Quantization optimization

Automatic fitting and compression of HDR data to LDR 

data

UV0 UV1

Material Fitting

As we run the fitting process with full precision to ensure a good convergence rate 
and result quality. 

But, saving the results with full precision isn't always feasible, as their size can be 
quite substantial. Therefore, we've come up with several solutions to tackle this 
issue.

Such as splitting the result texture map by visual contribution, applying 
differentiable quantization, and automatic dynamic range compression, etc.

Let’s have a quick look.

35



Fitting Texture Improvement

512UV0 luminance 512UV1 color

The human visual system is much more sensitive to variations in *brightness* than *color*

Reduce storage size by splitting brightness(luminance) and color(chrominance), then optimize/compressing chrominance [Chroma 

subsampling]
1024UV1 color 1024UV0 luminance

512UV1 color

As a background, I'll introduce some terminology. UV mapping is 
the process of creating a 2D representation of a 3D model's 
surface, is done by unwrapping the model's geometry into a flat 
2D texture, which is called a UV map or UV texture. 
A UV island is a connected group of polygons in a UV map.

In our game, the first UV map of a model (referred to as uv0) 
may contain overlapping or mirrored UV islands in order to 
increase the average island resolution thus higher texel 
density and better visual quality.

And the second UV map (referred to as uv1) is generally used 
for storing our fitting result, there is no overlapping or 
mirrored UV islands in this map because we don't want to mess 
up the specular part of the fitting result.
---
Back to the topic,

36



To increase the fitting quality of the original result on the 
left, the most straightforward way is to increase the 
resolution of the texture. But we can't always afford to do 
that due to the package size constraint.

Based on several works related to chroma subsampling for image 
and video compression, which utilize the fact that human eyes 
are more sensitive to brightness than color, we could split the 
fitting result into two parts, one for brightness(or luminance) 
and one for color(or chrominance).

Then we could store the luminance part in a higher resolution 
texture, and store the color part in a lower one. Since the uv0 
texture is optimized to have more uv space per island as I 
mentioned, it's more suitable to store the luminance part. And 
then the color part can be stored in uv1 to save space.

We have made several experiments on this idea. Eg. The fitting 
result on the middle with optimized uv0 and smaller uv1 texture 
is better than the original. 
And we could also use a smaller uv0 and uv1 texture as a 
combination to approximate the original one. The fitting result 
on the right is a bit worse, but it's still acceptable in some 
cases.

36



Quantization Optimization

Quantization：

Ensure differentiability in the whole process (STE, SoftQuant)

Reduce quantization error by gradient descent

…

F32 RTs U8 RTsDifferentiable Quantization

Gradient Descent

In practice, the rendering result is typically stored as an 8-bit integer, whereas the 
shading calculation is performed using floating point. As a result, it becomes 
necessary to quantize the floating point data to an 8-bit integer. 
This involves the process of quantization, which converts continuous values into 
discrete ones by clipping and rounding, and often results in a loss of precision.

To alleviate this issue, we want to take the quantization error 
into account during the loss calculation of our optimization 
process. 
But quantization is not differentiable, all the gradients will 
vanish at some point. 

So, How could we solve this problem? Turns out there are 
several solutions to this problem, 
such as using the straight-through estimator (STE) or a soft 
quantization function etc.

37



These all work by replacing the quantization operation with a 
differentiable approximation.

Based on our experiments, we found that the soft quantization 
function is more stable than the STE method.

37



Auto Fitting HDR Data To LDR

More Details In
Low Intensity Range

More Details In
High Intensity Range

I𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑒𝑖𝑛ℎ𝑎𝑟𝑑 =
𝒄

1.0 − 𝒄

First Order Tone Mapping：

𝐜 =
𝒄

a𝒄 + 𝑏
Reinhard =

𝒄

𝒄 + 1.0

Special Case

𝐜 =
𝒄

𝛼𝒄 + 𝛽

Special Case

First Order Inverse Tone Mapping：

First Order Inverse Tone 
Mapping Curve Examples

Good Compress Curve

Bad Compress Curve

Second Order Inverse Tone Mapping：
𝐜 =

𝒄 + a𝒄

𝑏𝒄 + 𝑐𝒄 + 𝑑

Second Order Tone Mapping：

𝐴ces =
𝒄 (2.51𝒄 + 0.03)

𝒄 2.43𝒄 + 0.59 + 0.14

𝐜 =
𝛼 − 𝛾𝒄 + 𝛿𝒄 1 − 𝛽𝒄 + (𝛼 − 𝛾𝒄 )

− 1 − 𝛽𝒄

𝐜 =
0.0062 − 0.1213𝒄 − 0.0021 9 + 13702𝒄 − 10127𝒄

𝒄 − 1.03292

Special Case

Special Case

Second Order Inverse Tone 
Mapping Curve Examples

Let’s talk about tone-mapping.
Since we have adopted physically based rendering, which implies that HDR 
rendering/lighting is used, it also means that ideally our fitting result should be stored 
in HDR format as well. 
But due to the limitation of the storage size, we store the resulting texture in LDR 
format through tone mapping.  And in rendering, we apply the inverse tone mapping 
to convert it back to HDR format.

As a simple background, you can treat tone mapping as an invertible non-linear 
function which maps HDR values to LDR. 
And by adjusting the parameters of the tone mapping function, we can control the 
details of dark and bright areas in the image.

It's not optimal to use fixed tone mapping parameters in practice, because the scene 
may have different dynamic ranges.

For instance, let's take a look at the character model on the left, which features a 

38



shiny surface. Mapping too much detail to the dark areas will make the bright areas 
look dull. So we need to adjust the tone mapping parameters to give more details to 
the bright areas.

Since our rendering pipeline is differentiable, we can optimize these parameters 
automatically with respect to appearance factor. 

We've tried several tone mapping functions, and found that the modified Reinhard 
function works for most of the cases. For complex scenes we also support more 
advanced/high-order tone mapping functions, with more computation cost as a 
trade-off.

<EOP> So, the material fitting part is over, hope you guys get 
some ideas.

38



Skinned LOD Generation

Appearance Driven Mesh Simplification

DR based Shape Fitting

 Iterative Simplification

 Shape Gradient Optimization

 Interactive LOD Generation

Implementation detail

Appearance Driven based Auto Skinning

 Skin Gradient

 Loss Design

 Skin Neural Initialization

 Skin Gradient Optimization

After getting the material fitting done, we hope to further generate the Skinned 
Mesh LOD assets with the help of differentiable rendering. 

Yeah, differentiable rendering is really a fundamental building block of our asset 
pipeline. It opens up a lot of possibilities for us.

The following section will present our work on Appearance Driven Mesh 
Simplification and Auto Skinning. 

39



Mesh Simplification

Related solutions
Vertex Cluster / Decimation Based

QEM Edge Collapse Based

Remesh Based

Cons
Lacking consideration for the visual importance of mesh vertexes and faces

Common remesh algorithm can not retain original UV

Conventional mesh simplification methods lack consideration for skinned meshes.

When it comes to mesh simplification, there are many classic methods available, 
such as vertex decimation, edge collapsing, and remesh-based techniques. However, 
these methods typically only consider geometry-based error metrics and often fail to 
consider  appearance factors and skin weights.

To address this issue in mesh simplification, we have come up with a hybrid approach 
to deal with it. 

Let's see how it works.

40



Iterative Simplification

Appearance Driven Mesh Simplification
 Iterative Simplification：Repeatedly choose areas with minimal visual impact to compress

The first step is a coarse mesh decimation operation that using classic 
algorithms as a speed-up.
The error metrics of this step are based on the image space difference 
produced by our renderer.

Furthermore, we will apply additional weights to the vertices around joints 
to ensure the skin quality of the simplified models.

And then,

41



Iterative Simplification Appearance Driven Shape Optimization

Appearance Driven Mesh Simplification
 Iterative Simplification：Repeatedly choose areas with minimal visual impact to compress

 Gradient Optimization： Optimize the compressed meshes with shape  and skin gradients,   reducing 

visual discrepancy 

After The Coarse Simplification, we will apply the shape gradient 
optimization on the decimated mesh to reduce visual discrepancy.

Let’s see how shape gradient descent works.

42



DR based Shape Fitting
Shape Gradient Descent
Efficient shape fitting can be achieved by running shape gradient 

decent on the following Optimization Goal:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒙∈ℝ𝒏𝑿𝟑  

𝜱 𝑹 𝒙 +
𝝀

𝟐
𝒕𝒓 𝒙𝑻𝑳𝒙      

 (L  is Discrete Laplace regularization， R  is differential render， 𝜱  is  loss function)

First-Order / Second-Order Shape Fitting

First-Order Optimization

𝒙 ←  𝒙 − 𝜼
𝛛𝝓

𝛛𝒙
+ 𝝀𝑳𝒙

Second-Order Optimization [Nicolet2021Large]

𝒙 ← 𝒙 − 𝜼
𝛛𝟐𝝓

𝛛𝒙𝟐 + 𝝀𝑳
𝟏

𝛛𝝓

𝛛𝒙
+ 𝝀𝑳𝒙

approximate the Hessian with Identity matrix: 

𝒙 ← 𝒙 − 𝜼 𝑰 + 𝝀𝑳 𝒑 𝛛𝝓

𝛛𝒙

[Nicolet2021Large]

By leveraging differentiable rendering, we can ensure the differentiability of the 
entire pipeline, 
which enables us to perform appearance-driven mesh optimization. 

To achieve this, 
we designed a loss function that takes into account both appearance and geometry 
factors.
Moreover, to ensure the smoothness of the geometry, we introduced a Laplacian 
operator into the process.

<CLICK>The conventional first-order optimization may converge slowly and is more 
likely to be trapped in local minima. Because complex geometry optimization is 
usually a non-convex optimization problem. And the Laplacian operator as a 
hyperparameter is not easy to tune.

Therefore, following the recent research results, a second-order 
optimization is applied by using an approximated Hessian Matrix to 

43



increase the convergence speed.

From the sphere fitting example in the video <CLICK>, we can see that 
second-order optimization can achieve much faster convergence

43



Interactive Mesh LOD Generation
 Our System can automatically Locate areas with large render losses and optimize them with gradient 

descent and backtracking.  

 Besides,  artists can Interactively paint on meshes to precisely select areas for Finetuning . 

Sometimes, there are corner cases we have to deal with. For example, 

some complex meshes may produce large gradients, which make it hard 

to converge.

Therefore, we have implemented a backtracking step to redo the 

undesired modification. <CLICK>

Besides, we also give artists a way to interactively paint on meshes to 

precisely select areas for fine-tuning. <CLICK>

Since the simplification process generally changes the topology of the 

44



mesh, so the skinning weights of the mesh need to be fixed as well. 

44



Auto Skinning

Related Work
Geometry Based

Pose Sequences Based

Data-Driven Network Based

Cons
Only use static mesh for skin prediction

Mainly designed for dynamic scanned meshes

To fix the skin weight from last step, 

Most of the existing auto skinning methods, like geometry and neural network-based 
only use static mesh for skin prediction, lacking consideration for the existing 
animation sequences.  While pose sequences based methods are mainly designed for 
dynamic scanned meshes, 

Besides, without making use of the existing skin, the generated skin quality can not 
be guaranteed. 

Therefore, we designed a differentiable rendering based auto-skinning system to 
address these issues.

45



DR based Auto Skinning

Skin Neural Initialization
Predict initial skin weight by GCN to accelerate gradient 

convergence

Appearance Driven Skin OptimizationSkin Neural Initialization

Appearance Driven Skin Optimization
Perform skin gradient descent based on animation sequences. 

Our system is composed of 

a skin neural initialization module, which predicts initial skin weights by the neural 
network to accelerate the gradient convergence, 

and an appearance driven skin optimization module, which performs further skin 
optimization based on existing animation sequences.

46



Skin Neural Initialization
SkinNet Structure (ref:[xu2020rignet])
Multi Layer GCU : Ideally suitable conv layer for graph based data（Mesh, Skeleton）

 Global / Local Encoding 

 Output skin probability distribution

Training
 Data: open source dataset to pretrain,  game assets to finetune

 Loss:  Cross-Entrophy 𝑳𝒔 𝒘𝒔 =
𝟏

𝑽
∑ ∑ 𝒔𝝂,𝒓 𝒍𝒐𝒈 𝒔𝒗,𝒓𝒓𝒗

(V is vertex set，r is bone set，𝐬𝛎,𝒓 is gt skin, 𝐬𝐯,𝒓 is predict skin)

Optimization
Optimizing for skin mixture :

Add vertex visibility matrix, 

Add Humanoid Skeleton Prior

Benefit
Accelerate the gradient convergence

Avoid falling into local minima

Skin convergence rate w/ or w/o SkinNet

The skin neural initialization module is based on SkinNet, a network designed for 
initial skin weights generation for low-poly meshes. Our work is strongly inspired by 
the paper RigNet.

The SkinNet comprises three layers of Graph Convolution Units (GCU) to capture 
both global and local feature of input mesh. 
With volume geodesic neighboring and attention driven clustering, we got bone 
probability distribution and finally the skin weights.

To improve generalization, we use open-source dataset to pretrain and fine-tune 
with HOK's own models.

We use cross-entropy loss and Adam optimizer with Edge Dropout during training to 
speed up convergence and 
alleviate the over-fitting issue.

From the graph on the bottom right, we can see that the convergence rate increases 

47



a lot after the skin neural initialization module is applied.

47



Appearance Driven Skin Optimization

Skin Gradient
Skin Gradients can derive from  Linear Blend Skinning (LBS) equation 

 𝒗𝒄 = 𝝎𝒊𝒗
𝒃𝑲𝒊

𝑵 𝟏

𝒊 𝟎

Skin Optimization with Animation
   Optimize LOD skin weight from the animation appearance of  the 

reference model

The learned weights are more optimized for the animation compared 

with conventional conventional static mesh based methods

Using the initially predicted skinning weights by neural network as a start, 
we aim to further optimize them through a gradient-based method with 
the help of differentiable rendering.

- First, we obtain skin derivatives using the Linear Blend Skinning equation, 
which can be integrated with our differentiable rendering pipeline to 
effectively propagate gradients. 
- Then, we iteratively refine the skinning weights with respect to the 
appearance loss. 
- Additionally, we leverage the original mesh animation sequences to 
perform further optimization of the model. (learn from more samples)

Here is a short video to show the optimization process. <CLICK> The 
convergence is quite fast with the help of initial predicted skinning weights.

48



Let's go ahead 

48



Skinned LOD Results

Compare with Other Methods
 Shapes are more desirably preserved around important 

region

 Necessary vertexes are preserved around joints

 High quality animation skinning is preserved

k   k

The comparison results indicate that when the same number of faces are used, 
shapes are better preserved in crucial areas such as faces and hands. 

In addition, essential vertices are retained around joints to improve the overall skin 
quality.

<EOP>

Let's turn our attention to the material compiler, another core 
component of our system.

49



Differentiable Material Compiler

LLVM

PTX
Torch

Mythal Compiler

Material complexity is a key issue in our projects, especially when it comes to 
differentiable rendering. 
As we learned from Fei, the material shading part of differentiable rendering 
framework needs to be differentiable as well. 

This has presented a challenge for us, as we need to come up with a plan to 
differentiate these shaders in order to make our rendering process differentiable.

So we have created a compiler on top of Microsoft’s open-source project DXC. 

50



Differentiable Material Compiler

HLSL centric

Clang(DXC) based source 

transform

Leverage Pytorch’s AD 

LLVM backends

PTX backend (WIP)

Architecture overview

This is the big picture of our compiler framework.

We have implemented a Clang-based source-to-source transpiler which transforms 
HLSL code to python 
and we also have a work-in-progress LLVM backend that compile HLSL code to PTX.

In order to achieve differentiability, the transpiled Python code will  make use  of 
PyTorch’s automatic differentiation (AD) framework to do the trick. 

Let’s dig into it.

51



Differentiable Material Compiler
Implementation Briefing

 Indentation-aware AST visitors

Straightforward syntax unit translation

Strong type code gen

Structure, naming  close to original source

“Let’s see who you really are!”

Yes, you guessed right, my compiler work is truly busy. --- Because there are a lot of 
visitors I have to treat.

Joking aside, let’s see how it works 

52



Differentiable Material Compiler
Implementation Briefing

 Indentation-aware AST visitors

Straightforward syntax unit translation

Strong type code gen

Structure, naming  close to original 

source

AST AST Visitor

VisitFunctionDecl

VisitCompoundStmt

VisitCallExpr

VisitBinaryOperator

…

HLSL

Python

The implementation is quite straightforward, because the AST of HLSL and python 
shares a lot of similarities. 

Of course, there are some differences we need to take care of, 
like python usually can't pass function arguments by reference like HLSL’s `out` 
keyword do,
and python don't support function overloading etc. 

The former can be solved by python's multiple return value and structured binding.
And the latter can be solved by implementing a simple name mangler.
(If you guys are interested in the detailed implementation, I have left some bonus 
slides at the end of the presentation, we can talk about them later.

So, in brief

53



Differentiable Material Compiler
Implementation Briefing

 Indentation-aware AST visitors

Straightforward syntax unit translation

Strong type code gen

Structure, naming  close to original 

source

The overall design of our solution includes several key features:

Indentation-aware AST visitors, this allows us to accurately process the structure of 
the code and maintain proper indentations in the resulting Python code. TLDR: scope 
to indentation
<CLICK>

54



Differentiable Material Compiler
Implementation Briefing

 Indentation-aware AST visitors

Straightforward syntax unit translation

Strong type code gen

Structure, naming  close to original source

Strong typed code generation, with type information, the generated code is more 
efficient and easier to read, it also helps for later static analysis and jit code 
generation

And Our solution aims to preserve the structure and naming conventions of the 
original HLSL code as much as possible, making it easier to understand and debug.

55



Differentiable Material Compiler

Broadcasting

If-Conversion

Vectorization

From this figure, you see we can use Python code to run Shader Toy. I used iq's SDF 
playground as a test case because it is complex enough to demonstrate our 
transpiler’s functionality.

We know that shader code is executed in SIMT mode on the GPU, highly parallelized. 
However, the generated Python code is executed in scalar mode on the CPU and is 
therefore naturally very slow.

<CLICK>
So I have implemented automatic vectorization by if-conversion, which translates 
control flows into masked operations. (sound familiar? SIMD folks

We can see that the performance improvement is quite impressive here.

56



Differentiable Material Compiler

DXIL is compatible with LLVM IR

Robust for analysis (SSA form)

Multiple backend choices 

Alpha version of PTX backend 

implemented

A step further -> LLVM IR

Though it's a good start, the transpiled python code is a bit verbose and it's hard to 
apply optimization algorithms on AST

We aim to make our solution more robust and performant. 

Since we're on top of LLVM, and HLSL's ir format DXIL is compatible with LLVM IR, so 
existing SSA-based optimization algorithms can be applied.

Therefore, we have an initial version of PTX backend implemented.

57



Differentiable Material Compiler
High performance PTX backend

PTX ISA code gen Done(almost)

 In-house software rasterizer as runtime

LLVM optimization passes applied

Automatic differentiation(WIP

This is the result of our PTX backend, and it is currently working well.
Just kidding.

Those who have written CUDA programs may recognize this bug: it's caused by 
control flow divergence without proper synchronization. 
<CLICK>

Currently, I have solved this issue by inserting sync points based on control flow 
graph analysis. 
Though there is still room for improvement,  like employing data flow analysis to 
make finer-grained sync point insertion, (or leverage memory coalescing)

58



Differentiable Material Compiler

Fitting/Optimization/Quantization

Better tooling

Static analysis

LLVM upstream/MLIR/NPU

…

Future Thoughts

Looking ahead, there are several potential directions we could take:

Since performance is a huge factor on mobile platform, so fitting, quantization and 
mixed precision calculation is certainly an important direction.

We could also bridge python’s ecosystem to unlock more potential for us, like 
simpler visualization and better tooling.

We see Microsoft have already paved the way of bring DXC to LLVM mainline. This is 
a great step forward for the community. 

It also opens the door for us to research deep learning compilers for further 
optimization 
And we could even deploy our models to the mobile on-chip NPU.

<EOP>

59



Asset Pipeline

Gaps between game assets and ML datasets

…

Diverse data source and formats

Generally mutable

Structured, hierarchical, binary 

…

Diverse data source and formats

 Immutable to modification

Column, tabular, array like

…

…

In the field of game development, the use of machine learning has been growing 
rapidly in recent years. However, one challenge that still needs to be addressed is the 
gap between game assets and machine learning dataset.
*CLICK*
Game assets, like 3D models and textures, are typically designed for real-time 
rendering and interactive use. They come in a variety of formats, produced by 
different game engines and DCCs.
*CLICK*
Similarly, machine learning datasets are generally structured in a different way. 
They're typically stored in tabular or array-like structures.

Filling the gap between game assets and machine learning datasets can be 
challenging, but it is necessary  to achieve the full potential of machine learning in 
game development.

60



Asset Pipeline
Cross Engine/DCC assets loading

Assets processing algorithms 

unified

It works^{tm}

As demonstrated by these screenshots, you see that our system is able to perform 
machine learning tasks across various game engines.

61



Asset Pipeline
Access production assets from 

“anywhere”

Researcher friendly(jupyter

notebook, mathematica, API…)

Accessibility

Here are also some pictures showing that our game asset service offers seamless 
access to a diverse collection of game assets through multiple clients, including our 
machine learning agent, web browser, Jupyter notebook, and even Mathematica, etc. 
This convenience and versatility make it an ideal choice for research and 
experimentation, enabling quick and efficient prototyping.

62



Asset Pipeline

Service oriented

Flexible, Scalable

Widely accessible

Architecture Overview

Let’s talk about the architecture.
You may have heard of microservice and how it’s becoming increasingly popular in 
building a service-oriented platform. I'm going to give you a high-level overview of it.

Our architecture has three major parts: frontends, a centralized gateway, and 
backend services. I'll go over each one in brief.

The frontend of our asset pipeline including DCC plugins, tools, and web browsers, 
etc. 

This is made possible by a centralized gateway that simplifies API routing and reduces 
client-service coupling. 
It employs gRPC as its standard communication protocol, offering improved 
streaming and accessibility, and we also have an HTTP relay for seamless integration 
with the web stack.

Lastly, the backend services run seamlessly behind the scenes and communicate with 
each other via the Event bus.
Let’s zoom into the service backend for more detail.

63



Asset Pipeline

The service backend has three major services:
• The Asset service for asset processing
• The Scheduler service for training job scheduling
• The Training agent service for agent management

These services communicate through an event bus that uses a pub-sub pattern. This 
allows for asynchronous, decoupled communication, where each service can 
subscribe to relevant events and publish events to the bus.

For instance, the Scheduler service may publish a training job event which the 
Training agent service can receive through  subscribing to it. 

This way each service can evolve independently while the event bus ensures message 
reliability and durability, avoiding loss or duplication even during failures. 

64



Asset Pipeline

ETL style pipeline

“Learning by Synthesis” 

ML Platform friendly

Asset Service

The role of the asset service in our platform is crucial.

As previously stated, data is of paramount importance in machine learning. Hence, 
utilizing game assets effectively is critical.

We have adopted the ETL framework as conventional machine learning platforms do 
to ensure data consistency, cleanliness, and efficiency for training.

By leveraging the flexibility of game assets, we use a "learning by synthesis" approach 
to enhance the data set. Based on asset type, usage, or other metadata available in 
the game engine or DCCs, we can synthesize new scene parameters, character pose, 
camera views, and formats(like GLTF, USD), and we can even do automatic labeling 
based on this approach.

Btw. Our system is also compatible with traditional machine learning data pipelines, 
like Spark and Hadoop, etc., Making it even more flexible

So, my part is over. 
I understand that the concepts presented may have been dense and numerous, but I 

65



hope you have found the information helpful. Thank you for your attention and 
understanding, and please feel free to reach out with any questions or clarifications.

Now it’s Fei’s turn to give us a conclusion and takeaways

65



Conclusion

Welcome to the conclusion section. It is my pleasure to conclude today’s key points. I 
sincerely hope that today’s presentation was not boring and it provided you all with 
some valuable insights.

66



Mythal(v1.0.0.0) has been deployed to produce high quality LOD assets for HoK to meet high demanding 

overseas environments
 We are able to achieve a 30-fold increase in production efficiency compared to traditional methods

 In terms of picture quality, high-quality LOD assets are almost authentic to non-professionals on mobile phones

 Visual error analysis-driven optimization algorithms have the potential to continue evolving by incorporating the expertise of art 

professionals

Productivity

Before I summarize, let's take a look at some of HOK's actual achievements.

We have used Mythal to create a lot of LOD assets that meet the demanding 
requirements for a range of overseas environments. 

Our new technique has increased production efficiency by 30 times compared to 
traditional methods, while delivering high-quality LOD assets without much loss in 
graphics quality. 

It ensures that HOK will meet the highest visual standards for various players and 
devices worldwide.

In addition, we can improve the system’s visual error analysis by continuously 
learning from human experience.

67



Results
With 2080 graphics card, 1.8 million vertices, 600,000 triangles, 1024 resolution, HTBR rasterization process perform less than 1ms

Rendering result is utterly the same with hardware rendering

Using wavefront ray tracing, an iteration typically takes 1.4 seconds with 3 bounces and 64 spp

68

Our simulated rendering pipeline has been able to achieve the same rendering results 
compared to the references using hardware graphics APIs. 

Although our method may not be as fast as its references in forward rendering, it still 
performs quite well.

It's important to emphasize that the tradeoff of forward rendering performance here 
is valuable.  It gives the ability to freely extend gradient backpropagation algorithms. 
For instance, we easily added a more efficient custom gradient method on blending 
operations. 

This makes the system more potentially in reverse rendering than other methods.

However, if we need to further increase the rendering speed, as we learned before, 
our system is distributable and heterogeneous, we can simply add more GPUs or 
other devices to the system.

68



Fitting Metrics

CPU: AMD Ryzen 9 5950X

GPU: NVIDIA GeForce RTX 3090

2048 * 2048 fitting resolution

30~150 milliseconds per epoch 

hundreds to thousands of epochs

5~12 GB VRAM consumption
optimize

loss

2048 * 2048 fitting 

resolution

AMD Ryzen 9 5950X RTX 3090

We use a powerful AMD Ryzen 9 series processor and an RTX Compatible graphics 
card to run the auxiliary asset production system efficiency.

For single fitting tasks, with 2k fitting resolution, our system requires around 5 to 12 
GB of video memory.

During each cycle of our system's operation, called an "epoch," it often takes 
anywhere from 30 to 150 milliseconds to complete.

After runs for hundreds of epochs, the system usually produce the best possible LODs 
from the origin game assets.

69



Key Points From Today

Create high-quality LOD assets automatically by utilizing differentiable rendering.

Utilize a deferred raster/tracing pipeline to simplify problems.

Use a combination of automatic and manual differential methods to optimize results.

Develop a material compiler to create a differentiable shading language.

Integrate differentiable rendering into various networks to add appearance-driven capability.

Use an asset service to support cross-engine and distributable demands.

Okay, It’s time to wrap up today's presentation. I'd like to give you a quick summary. 

First, with modern technology, we can now free our artists to create without worrying 
much about performance. We can also use gradient-based methods such as 
differentiable rendering to automatically generate the best LOD assets for games. 

[click]When building a differentiable rendering pipeline, we can simplify almost 
everything by using the deferred concept, both on raster and raytracing rendering 
pipelines. 

[click]For the best results, we can use a combination of automatic and manual 
differential techniques, depending on the situations. 

[click]An in-house differentiable material language compiler can be a big help in 
handling highly customized materials. Following LLVM and DXC will give you to a great 
start. 

[click]It is a great idea to combine differentiable rendering  with other AI techniques. 
Differential rendering can greatly enhance the AI network’s performance due to add 

70



some important appearance-driven features to them. 

[click]Finally,  It will be a valuable addition work by incorporating some industrial 
designs such as game asset services. It can be helpful to tackle many complex fitting 
tasks.

70



THANKSTHANKS
Twitter:
@ifree0 (Frei Zhang)
@EleisonLing (Fei Ling)

That’s all for today, Thank you for taking the time to join us.

I think we don't have much time left for onsite QA today, but feel free to ping us on 
Twitter if you have any questions.

71



Bonus Slides

Here comes the corner cases as I previously mentioned.

One of the challenges we faced in our solution was handling function overloading, 
which is not supported in Python. 

To address this issue, we made use of Clang's built-in name mangler. While this 
effectively solved the problem of function overloading, it resulted in excessively 
verbose function names that were difficult to read. 

As an alternative, we implemented our own simple name mangling approach, which 
gives an index-based suffix to function name to distinguish it from others. This helps 
to maintain the readability of the code while still allowing us to handle function 
overloading.

The code is simple enough to be self-explanatory. 
1. Group functions by name, each group member has a unique index
2. The code gen part will check the group when output function name

72



Differentiable Material Compiler
Implementation Briefing

 Function overloading 

Naïve name mangling by name numbering

Works on single TU

 Could reuse clang’s mangler but lose readability(will consider it if later we do linking

Here comes the corner cases as I previously mentioned.

One of the challenges we faced in our solution was handling function overloading, 
which is not supported in Python. 

To address this issue, we made use of Clang's built-in name mangler. While this 
effectively solved the problem of function overloading, it resulted in excessively 
verbose function names that were difficult to read. 

As an alternative, we implemented our own simple name mangling approach, which 
gives an index-based suffix to function name to distinguish it from others. This helps 
to maintain the readability of the code while still allowing us to handle function 
overloading.

The code is simple enough to be self-explanatory. 
1. Group functions by name, each group member has a unique index
2. The code gen part will check the group when output function name

73



Differentiable Material Compiler
Implementation Briefing

 “Out” parameter handling

Out parameter in HLSL means pass parameter by reference.

 Python have partial support for this behavior only for object types

Make use of python’s multiple return

Another challenge we encountered was handling "out" parameters in HLSL, which 
means pass parameters by reference. 

While Python only support this behavior for object types to some extent(object mod 
but no assignment), we certainly needed a more robust solution. 

To address this issue, we made use of Python's ability to return multiple values from a 
function. 

This allowed us to effectively emulate the behavior of "out" parameters in HLSL and 
ensure that our code was correctly handling these types of parameters.

There are several conversion rules you could see in the comments.

74


