
AT GDC2023

MEET
LIGHTSPEED STUDIOS
March 20-24, 2023 | San Francisco, CA

March 20-24, 2023 | San Francisco, CA

LIGHTSPEED STUDIOS

HSGI:
Cross-Platform Hierarchical Surfel Global Illumination

Production Team: , Minmin GONG, , ,

Junfeng LI, Wei LAN, Yucong, PAN, Kai DAI, Jiaqi GUO, Mali LIU, Lihua LI

HSGI
Cross-Platform Hierarchical Surfel Global Illumination

Motivation

● Reason
o Huge Open World

o Dynamic Geometry

o Dynamic Lighting

● Target
o PC/Console

o comparable result with path tracing

o Mobile

o controllable performance

[BundleFusion, 2017]

Idea

● Problem 1. Scene Description?
o Update dynamic geometry per frame at a large scale

o Inspired by 3D reconstruction with RGB-D

o Surfel = Voxel + Normal

Scene Color Voxel

RTDIHDDAScreen Trace

Trace Strategy

Radiance Source

HWRT

Probe

Idea

● Problem 1. Scene Description?

● Problem 2. Trace Ray?
o PC/Console: HWRT/HDDA/Screen Trace

o Mobile: HDDA

Voxel Inject ion

Structure Updat ing

Ray Tracing GI

Denoiser

Scene Result

Scene Result

G
I

S
y
st

e
m

+1 bounce

Idea

● Problem 1. Scene Description?

● Problem 2. Trace Ray?

● Problem 3. Multi-bounce?
o Radiance cache feedback

o Voxel light propagation

Radiance

Cache

Light

Propagat ion

Dif fuse Ray

Tracing

Dif fuse

Denoiser

Ray Traced

Reflect ion

Rough

Reflect ion

Specular

Denoiser

Final

SceneColor

Dif fuse

Indirect

Specular

Reflect ion

Scene

Light ing

GI Back

Inject ion

Gen Screen

Probe

Probe

Updat ing

Probe

Volume
Temporal

Supersample

P
C

/
C

o
n

so
le

M
o

b
il

e

Idea

● Problem 1. Scene Description?

● Problem 2. Trace Ray?

● Problem 3. Multi-bounce?

● Problem 4. Denoise?
o PC/Console: ReSTIR

o Mobile: Screen Probe

● Radiance Cache Structure
o Hierarchical Structure

o Injection

o Voxel Tracing

● Mobile Solution
o Probe Volume

o Deferred Screen Probe

o Final Gather

● PC/Console Solution
o Ray Tracing

o Diffuse GI

o Reflection

Outline

Radiance Cache

P
r

n

Hierarchical Structure

● Radiance Cache:
o Surfel = Voxel + Normal

● 1 brick = 4x4x4 voxels

● Clipmapping
o Sparse Volume Texture

● Resources:
o Brick ID:

o Physical memory offset

o Just like Page ID of virtual texture

o Memory Pool:

o Indexed by Brick ID

o Contains voxel data

o Hierarchy Link:

o Dense Brick ID structure

o Content:
o If Allocated: Brick ID

o Else: zero

o Allocator: tracking unused Brick ID

Diffuse Color r8b8g8 24 bits

Direct Outgoing Radiance r11b11g10 32 bits

Indirect Outgoing Radiance r13g13b12 38 bits

Normal r8b8 16 bits

Alpha r8 8 bits

Age Weight r8 8 bits

Masks uint 2 bits

Total (PC/Console) 4 textures 128 bits

Total (Mobile) 2 textures 64 bits

Voxel Data

● PC/Console:
o 4 Textures

o 128 bits

● Mobile:
o 2 Textures

o 64 bits

Injection

● Screen Injection:
o Generate one thread per voxel:

o sample < depth => clear

o sample > depth => skip

o sample ≈ depth => update (voxel intersects with depth)

● There’re too many threads if we update all voxels!

● Voxel Volume:
o Mobile: 100+m

o PC/Console: 500+m

● Tile-Based Injection
o Tile-based AABB Culling

o 1 Tile = 8x8x8 Bricks

o Amortize update rate based on distance

o Brick Collection

o 1 Brick = 4x4x4 Voxels

o 8-vertices test

o Voxel Injection

o Sample 3D point in voxel

o Get scene color/depth from the render pipeline

(c) 8-Vertices Test (d) Voxel Inject

(a) Tile-based AABB Culling (b) Brick Collection

Injection

Input Assembler

Vertex Shader

Tessellat ion

Geometry Shader

Rasterization

Pixel Shader

Color Blending

Injection

● What about the objects outside the frustum?

● Per-Object Voxelization:
o Disable depth test

o Orthographic projection

o 3 axis: instance draw

o Material shader

o (optional) forward lighting

(b) Occupy Structure (d) Step DDA(a) Hierarchy Link (c) Ray Tracing

Software Ray Trace

● Voxel Trace [GVDB 2016]

o HDDA

o Compact hierarchical voxel occupy data

o 1 bit per voxel occupancy

o uint64 per fetch

o sparse mip 0, trace performance for memory

o Optimize I/O cost

World Space X

Volume Ext ent

Y

Volume Ext ent

Y

World Space X

Volume World Shift

● Update HierarchyLink

● Toroidal Addressing
o Only the yellow zone needs to be clear

o Just mark a clear flag per voxel/brick

Mobile Solution

Idea

● Challenge – Performance!
o 1 spp ray trace ✘

o Probe solution ✓

● Idea：
o Place volumes of probes in the 3D

world [DDGI 2019]

o Simplify probe format

o Reduce rays

● Format
o Ambient Cube – irradiance and age

o Visibility – VSM

o Relocation Info – index and alpha

● Update
o Collect probes close to the surface – with voxel hierarchy structure

o Each frame rand 1 face to update – trace 1 ray

o Monte Carlo integration

o ׬
𝛺
𝑓𝑟 𝑥,𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 𝜔𝑖 ∙ 𝑛 𝑑𝜔𝑖

o =
c

𝜋
׬
𝛺
𝐿𝑖 𝑥, 𝜔𝑖 𝜔𝑖 ∙ 𝑛 𝑑𝜔i

o =
c

𝜋
lim
𝑁→∞

1

𝑁
σ𝑁=1
𝑁 𝐿𝑖 𝑥,𝜔𝑖 𝜔𝑖∙𝑛

𝑃𝑘
, 𝑃𝑘 =

𝜔𝑖∙𝑛

𝜋

o =𝑐 lim
𝑁→∞

1

𝑁
σ𝑁=1
𝑁 𝐿𝑖 𝑥, 𝜔𝑖

Probe Volume

LOD3

LOD1

LOD2

LOD0

Probe Volume Structure

● Clipmap:
o Support far-field

o More details for near-field

o Variable updating rate for different LODs

o How many?

o PC/Console: 4 LODs

o Mobile: 2 LODs

Multi-bounced

Without direct lighting With fake ambient environment With direct lighting

The First Bounce

● Calculate forward lighting in per-object voxelization
o The first bounce provide most lighting

o Add fake ambient skylight to initialize voxels

Problem

● Performance!

● The target device can only reach 30fps

o Forward pass gathers irradiance from the 3D
probe (ambient cube + VSM) directly

● Analysis
o Final gather from 8-probe interpolation

o Too many texture sampling and ALU

o Most neighboring pixels have repeated samples

o With slightly different weights

● Idea
o Deferred Indirect Lighting

o Screen Probe

With dither

BasePass

Diffuse Color

Depth

Shading Result with

Direct Light

View Normal Temporal Integrat ion

Gen Screen Probe for

Each Tile

Full Res Bilateral

Half Res Gather Radiance

Deferred Screen Probe

● Forward pipeline (optional)

● 1 more texture:
o Diffuse color: r8g8b8

o Normal: a8

Deferred Screen Probe

Without dither

With dither

● Lite Deferred pipeline

● 1 more texture:
o Diffuse color: r8g8b8

o Normal: a8

● 8 bits encoded normal:
o Transform world normal to view space

o Add random noise to dither normal

o Encode hemisphere normal to 8 bits

1 Screen Tile = 64x64像素 = 1 Screen Probe

Deferred Screen Probe

● Format: 4x4-texels hemisphere octahedral
mapping

● 1. Split screen to 64x64-pixels tiles

● 2. Generate screen probes for each screen
tile with jitter
o Use Visibility Rays instead of VSM

● Format: 4x4-texels hemisphere octahedral mapping

● 1. Split screen to 64x64-pixels tiles

● 2. Generate screen probes for each screen tile with jitter
o Use Visibility Rays instead of VSM

● 3. Gather screen probe in half resolution
o Depth test and normal test

o Temporal supersampling

● 4. Upsampe to full res
o Bilateral filter

Deferred Screen Probe

Final Gather

● Half-Res screen irradiance:
o Irradiance: R16G16B16

o Age: A16

● Bilateral filter
o gather screen probe

o Depth test

o Normal test

● Temporal filter
o Reprojection

o Depth test

o Convergence strategy with age

● If all four screen probes were invalid:
o Mark this tile

o Generate 1 more screen probe for this tile next frame

Without velocity map

No artifact anymore!

Add dynamic mask

Gen screen probe before dynamic

Dynamic Objects

● No velocity map?

● Mask dynamic object:
o Diffuse color: r8g8b7

o Mask: m1

● For dynamic objects:
o Gather 3D probe directly in half resolution

● For others:
o Generate screen probes before drawing dynamic

objects

o If the history sample is marked dynamic: discard

Per Frame Pass Cost (ms)

Generate Screen Probe 0.08

Gather Screen Probe 1.07

Indirect Lighting 1.00

Brick Collection 0.05

Injection 0.33

Irradiance Volume Updating 0.25

Hierarchical Structure Updating 0.40

Sum 3.18

Transient Pass Cost (ms)

Hierarchical Structure Shifting 1.51

Irradiance Volume Shifting 0.21

Object Voxelization 0.08

Sum 1.79

Performance - Mobile

● Hardware
o Device: iPhone 13 pro

o Chip: A15

● Base Pass
o Before 2.20 ms

o After 1.88 ms

o Skip indirect light calc.

o Less ALU in basepass

Showcases

● 动态更新展示 随着迭代时间增加，probe artifact会减少

● 和平精英团竞地图

PC/Console Solution

Screen Trace

HWRT

HDDA

Green: Hardware RT

Red: Screen Trace

Ray Tracing Again

● HDDA
o Voxel Trace

● Screen Trace [Uludag 2014]

o HZB HiZ (diff resolution)

o GBuffer friendly (geometry insensitive)

● Hardware Ray Tracing
o PC/Console

o Best quality

Lite Full

Ray Tracing – HWRT

● Lite/Full Pipeline

● Near/Far TLAS

● Self Intersection
o Short ray first

o Cull back face

● Translucent
o Directly penetrate

● Mask
o Retrace (lite)

o AHS (full)

Scene Color Voxel

RTDIHDDAScreen Trace

Trace Strategy

Radiance Source

HWRT

Ray Tracing - Summary

● Can use RTDI method for hit point direct lighting when HWRT is used
o Accurate but expensive.

o Indirect lighting always from the cache system.

×

Sky

Voxel Cache for RT – Light Propagation

● Radiance Cache in Voxel
o Both direct and indirect

o Multi bounce support

● How to Update
o Scene Lighting Change

o Simple gather routine

Direct Only Direct + Indirect Screen Injection

Light Propagation

● Direct Lighting
o RTDI (analytic, world light culling)

o ReGIR solution in the future

● Indirect Lighting
o Hemisphere gather with RIS

o Temporal accumulation

● Screen Injection
o High quality voxel lighting in view space

Voxel

Surface

Light Propagation – Origin Geometry

● Where to trace from inside a voxel?

● 1. Offset along voxel normal
o Voxel radius distance is enough

● 2. Trace short ray in voxel normal back hemisphere
o Random direction in cone

o Trace distance is voxel diameter

● 3. Judge whether in current voxel
o Hit: fetch geometry from RTX

o Miss: reconstruction from voxel

Spatial Split

Temporal

Split

Brick Split

Total Voxels

Updating

Voxels

Light Propagation – Work Amortization

● Amortize computation cost

● Strategy
o Collect none empty bricks

o Near field (9 frames, 300m x 300m x 150m)

o Far field (121 frames)

o Voxel mask (64 bits)

o Compute work

o 16 threads for each brick

o Uniform sample valid voxel

o Insights: plane occupies 16 voxel in a brick at least

o Good cache performance, low divergence

Scene Voxels Ready for GI!

Diffuse GI

Temporal

Reuse

Pre Spat ial

Reuse

Visibility

Tracing

Post Spatial

Reuse

Ray TracingRay Gen

Mult i-Sample

Shading

Temporal

Filter
Custom SVGF

Basic Tracing (half res)

ReSTIR Denoising (half res)

Final Shading (full res)

Init ial Sample

Pipeline

𝐹 = න
Ω

𝑓(𝜔)𝑑𝜔 ≈
1

𝑁
෍

𝑖=1

𝑁
𝑓 𝜔𝑖

Ƹ𝑝 𝜔𝑖

1

𝑀
෍

𝑗=1

𝑀
Ƹ𝑝 𝜔𝑖𝑗

𝑞 𝜔𝑖𝑗

≡ ⟨𝐹⟩𝑟𝑖𝑠

𝑊(𝜔, 𝑧) =
1

Ƹ𝑝 𝜔𝑧

1

𝑀
෍

𝑖=1

𝑀

𝑤𝑖 𝜔𝑖

⟨𝐹⟩𝑟𝑖𝑠 =
1

𝑁
෍

𝑖=1

𝑁

𝑓 𝜔𝑖 𝑊(𝜔, 𝑖)

f(x)
p(x)

ReSTIR Basic

● [Bitterli 2020]

● Resampled Importance Sampling
o Approximate better target PDF (M, N)

o Source PDF: BRDF sampling

o Target PDF: lighting function (without visibility)

● Stream Reservoir
o Low memory footprint

o GPU friendly

● Abstract

o Keep most important sample

o Support any BRDF

o Large sample set from temporal & spatial (Large M)

o Still need to reduce bias

Reservoir (16 bytes)

Bounce type flags

Selected sample index

M

Weight

Target PDF

Surface (16 bytes)

Surface type flags

Occluded sample index

Closest hit distance

Linear scene depth

Normal

Sample (32 bytes)

Position

Normal

Radiance

Hit distance

Custom data

ReSTIR GI

● [Ouyang 2021]

● Temporal Reuse
o M clamping (20 frames)

o Boiling filter

o Suppress highlights and flickers

o More stable

● Spatial Reuse
o Group shared memory optimization

o Introduce large bias!

Initial Sample

Temporal Reuse Spatial Reuse

Temporal

Reuse

Pre Spatial

Reuse
Init ial Sample

ReSTIR Intermediate Result

● Basic ReSTIR GI Processing

● M = 1, N = 1

0

100

200

300

400

500

600

60cm 110cm 400cm 590cm 790cm 980cm

Energy Decay With Distance

HSGI PT

With Jacobian

𝑥𝑖𝑦𝑖

𝑥𝑖+1

𝜃2
𝑦

𝜃2
𝑥

Jacobian

● Reconnection shift (solid angle PDF conversion)
o [Ouyang 2021], [Lin 2022]

● Critical for GI detail (natural AO effect)

● Diffuse energy bias less than 15% comparing PT

● Suffer from singularity, bound max value (not min)
o Prefer darken bias than lighten bias

PT UE5

Naïve ReSTIR GI

Bias Analysis

● Too Much Bias!

● Lack Indirect Detail!

● Poor Quality!

● Target PDF without visibility
o Lost indirect shadow, contact AO, lighting detail

● Dominated bias
o Multi-pass spatial reuse

● Heuristic neighbor selection
o Already done, not enough

● Trace rays for each step
o Too costly

● Biased ReSTIR Version
o More spatial reuse, more stable, more bias

o Lower quality comparing to UE [Wright 2022]

o Screen probe + bent normal

● Unbiased ReSTIR Version [Bitterli 2020]
o Too noise under high frequency lighting area

o No enough successfully reused sample

o If you do nothing, then it is unbiased!

● What we want?
o Keep high frequency indirect shadow detail

o Real time and stable

o Not simple screen AO solution

𝔼[𝑊(𝜔, 𝑧)] =
1

𝑝 𝜔𝑧

𝑍 𝜔𝑧
𝑀

𝑍(𝜔) = 𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑀 and 𝑞𝑗(𝜔) > 0

Bias Analysis

Question?

● Visibility bias. Bright samples lighten shadowed area. How to extract indirect shadow information?

Idea!

Spatial Reuse - Merging

After Temporal Reuse

Visibility Trace

● Simple 1 visibility trace may help! Restore to low bias temporal reuse result. Pretty efficient!

ReSTIR GI Shadow

● 1. Naïve ReSTIR select most important sample
o The brightest local virtual light (sample)

● 2. Trace 1 ray after the last spatial reuse
o From pixel position to sample position

o Indirect light shadow info

● 3. Check visibility
o If miss:

o Valid sample

o If hit:

o Store occlude distance and direction

o Restore to temporal reuse result (less bias)

● 4. Post spatial reuse
o Heuristic neighbor selection with shadow condition

o Whether occluded (whether in shadow)

o Occlusion direction and distance

ReSTIR GI Shadow – Post Spatial Reuse

● Heuristic neighbor selection with shadow condition
o 1. Both outside shadow (low risk, accept)

o 2. One inside shadow, one outside shadow (high risk, reject)

o 3. Both inside shadow (judge occlusion direction and distance)
o 𝑖𝑓 𝑑𝑜𝑡 𝐶𝑒𝑛𝑡𝑒𝑟𝑂𝑐𝑐𝐷𝑖𝑟, 𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑟 > 𝑎 || 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑂𝑐𝑐𝐷𝑖𝑠𝑡 > 𝐶𝑒𝑛𝑡𝑒𝑟𝑂𝑐𝑐𝐷𝑖𝑠𝑡

o 𝑟𝑒𝑡𝑢𝑟𝑛 𝐶𝑒𝑛𝑡𝑒𝑟𝑂𝑐𝑐𝐷𝑖𝑠𝑡 > 𝑏 ∙ 𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑡 (ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘)

o 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒 (𝑙𝑜𝑤 𝑟𝑖𝑠𝑘)

Comparison
● ReSTIR GI Shadowing

UE5

Naïve ReSTIR GI

PT

ReSTIR GI Shadowing

●

PT

ReSTIR GI Shadowing Naïve ReSTIR GI

UE5

PT ReSTIR GI Shadowing Naïve ReSTIR GI UE5

ReSTIR GI Shadow Summary

● Keep indirect shadow

● High frequency detail

● Indirect shadow extraction

● 1 ray per pixel

● Enough for real time

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓(𝑥𝑖)

Ƹ𝑝(𝑥𝑖)

1

𝑀
෍

Ƹ𝑝(𝑥𝑗)

𝑝(𝑥𝑗)

Color Noise

● Current ReSTIR pipeline: large M small N

● 1 sample is not enough for final shading

● Target PDF is scalar without spectrum info
o Save ALU and Memory

o If RGB, all the things x3

● Should increase N!
o Temporal filter is slow for N

o New area from occlusion always own small N

● Just like reservoir spatial reuse

● Theory support
o Use neighbor reservoir to merge empty

reservoir

● Shade current pixel with neighbor
sampling info
o 3x3, 5x5, 7x7

● Increase N efficiently

● Suppress color noise

● Support upsampling natively
o Keep full screen detail

o material and geometry

Before 3x3 Shading

Mult i-Sample

Shading

Temporal

Filter
Custom SVGF

ReSTIR

Denoising

Final Shading (full res)

Multi-Sample Shading

Before

After

Final Processing

● Temporal Supersampling
o Reprojection

o Depth and normal occlusion rejection

o Frame number accumulation

o Color clamping [NRD]

o Long history (50 frames)

o Short history (10 frames)

o Short history 5x5 neighbor info

o Variance clamping

● Custom SVGF [Schied 2017]
o Kernel weight

o Normal weight

o Depth weight

o Luminance weight

WS Reservoir Off WS Reservoir On

World Space

Reservoir

Reuse Init ial Sample

Screen Space

Reservoir

Visibility

Check

World Space Reservoir

● Screen Space ReSTIR Problem
o Disoccluded areas & fast camera movement

o No enough history samples

o Different degrees of convergence

● World Space Reservoir (ReGIR) [Boksansky]
o Generated by light propagation, stored in brick level

o Trace 1 ray to reduce visibility bias

o Fast converge, more stable

Scene Color Voxel

RTDIHDDAScreen Trace

Trace Strategy

Radiance Source

HWRT

Probe

Init ial SampleTrace Short Ray

Fetch Probe

Fetch Voxel
Far

Near

Trace Probe Mode

● Critical Scene Lighting
o Main bounce number >= 4

o Bright but small light source

● Trace Probe
o Short ray (= probe size)

o Fetch radiance from probe

o Smooth and stable

o Apply to far distance position

● Probe Format (PC/Console)
o Radiance: 6x6-texels octahedral mapping

o Visibility: VSM distance

o Relocation Info: index and alpha

o State and age

Trace Probe Mode

● Best Practice
o Trace ray mode as default for high quality

o Switch trace probe in critical scene for stability

o Dynamic switch for local areas

Specular Reflection

Reflection Off Reflection On

Reflection Is Important for GI

Temporal

Reuse

Spatial

Resolve

Screen Trace

RTX Voxel

Trace

Ray

Generation

Temporal

Filter
Spatial Filter

Low Roughness Tracing

ReSTIR Based Denoising Final Screen Denoising

Diffuse Trace

Result
Virtual Motion

High Roughness Reuse

Pipeline

Specular Trace Jitter Off

Specular Trace Jitter On

Ray Generation

● Full range roughness support [Kajiya]

● Specular Ray
o Roughness below 0.4 (GGX VNDF)

o Screen trace (full res HZB)

o HWRT (Lite/Full)

● Diffuse Ray
o Roughness above 0.4

o Reuse diffuse tracing result

o Performance opt

o Uniform denoising

● Canonical Sample Coverage [Lin 2022]
o 2x2 jitter

o Trace specular ray for 1 pixel

● Lerp to Diffuse GI
o For high roughness above 0.8

Before Temporal Reuse After Temporal Reuse

ReSTIR Denoising - Temporal

● Combine traced specular and rough specular (uniform denoising routine)

● Virtual motion support [NRD]

● Boiling filter (suppress specular firefly but lost energy)

● ReSTIR PDF stuff adjustment (match GGX)
o High roughness: reconnection shift; low roughness: half vector copy shift (not trace ray)

Before Spatial After Spatial

ReSTIR Denoising – Spatial

● World space spatial kernel (ReBLUR) [Zhdan 2021]

● Resolution upscaling

● ReSTIR Multiple shading shading
o Traditional IS resolve process not work (only BRDF sampling, too noisy) [Stachowiak 2015 & 2018]

0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8

Roughness response

Performance

HSGI: 73.48 fps (RMSE: 29.36) UE5: 59.62 fps (RMSE: 32.12)

None: 118.51 fps (RMSE: 57.34)PT

UE5 Pass Cost (ms)

Scene Update 0.06

Scene Lighting 1.14

Screen Probe Gather 1.83

Reflections 1.70

Ray Tracing Scene 4.90

Other 7.14 (+9.63)

Sum 16.77

HSGI Pass Cost (ms)

Diffuse Trace 0.64

Diffuse Denoise 2.65

Specular Trace 0.72

Specular Denoise 0.63

Light Propagation 0.33

Inject Irradiance Volume 1.13

Translucency GI Volume 0.14

Screen Inject Surfel 0.15

Ray Tracing Scene 2.14

Other 5.08 (+8.53)

Sum 13.61

Diffuse

Specular

Irradiance Cache

Translucency GI

Other

Performance - PC

● Hardware
o CPU: AMD Ryzen Threadripper 3970X

o GPU: NVIDIA GeForce RTX 3080

● Resolution
o TSR: 3840 x 2160

o Render: 1932 x 1084

o Tracing: 966 x 542

● FPS
o None: 118.51

o HSGI: 73.48

o UE: 59.62

Show Cases

PT UE5

HSGI – Trace Ray HSGI – Trace Probe

PT UE5

HSGI – Trace Ray HSGI – Trace Probe

PT

PT UE5 (RMSE: 47.70)

HSGI – Trace Ray (RMSE: 39.28) HSGI – Trace Probe (RMSE: 43.25)

PT UE5 (RMSE: 16.24)

HSGI – Trace Ray (RMSE: 11.92) HSGI – Trace Probe (RMSE: 19.36)

Demo Video

Summary

● Fully dynamic game scene
o Support geometry amination and destruction at large scale

● PC/Console
o Trace ray mode & trace probe mode

o Quality & stability

o ReSTIR GI Shadow

o Retain indirect lighting shadow

o Approach similar quality to path tracing

● Mobile
o Deferred screen probe

o Optimize DDGI to > 60fps

● No HWRT dependency

March 20-24, 2023 | San Francisco, CA

Future Work

● PC/Console
o Improve convergence with world space sampling (ReGIR)

o Further Reduce bias for specular reflection and diffuse probe trace

o Suppress color noise

o One more bounce for specular reflection

o More BSDF support

o Translucent Voxel

o AI based radiance cache and denoiser

● Mobile
o Bent normal AO

o Hit point filtering reflection

o Fast probe convergence speed

o Low probe energy bias

[BundleFusion 2017] "BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration", TOG 2017

[GVDB 2016] "GVDB: Raytracing Sparse Voxel Database Structures on the GPU", HG 2016

[DDGI 2019] "Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields", JCGT 2019

[Schied 2017] “Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination”, HPG 2017

[Bitterli 2020] “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting”, TOG 2020

[Ouyang 2021] “ReSTIR GI: Path resampling for real‐time path tracing”, CGF 2021

[Wyman 2021] “Rearchitecting spatiotemporal resampling for production”, HPG 2021

[Lin 2022] “Generalized resampled importance sampling: foundations of ReSTIR”, TOG 2022

[Boksansky] “Rendering Many Lights with Grid-Based Reservoirs”, Ray Tracing Gems II 2021

[Boissé 2021] “World-space spatiotemporal reservoir reuse for ray-traced global illumination“, SIGGRAPH Asia 2021

[Stachowiak 2015] “Stochastic Screen-Space Reflections”, SIGGRAPH Courses 2015

[Stachowiak 2018] “Stochastic All The Things: Raytracing in Hybrid Real-Time Rendering”, Digital Dragons 2018

[Uludag 2014] “Hi-Z Screen-Space Cone-Traced Reflections”, GPU Pro 5

[Wright 2022] “Lumen: Real-time Global Illumination in Unreal Engine 5”, SIGGRAPH Courses 2022

[Zhdan 2021] “ReBLUR: A Hierarchical Recurrent Denoiser”, Ray Tracing Gems II 2021

[NRD] “NVIDIA Real-time Denoisers”, https://github.com/NVIDIAGameWorks/RayTracingDenoiser/

[Kajiya] “Experimental real-time global illumination renderer made with Rust and Vulkan”, https://github.com/EmbarkStudios/kajiya

References

