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Topics

» What’s an affine transformation?
» How to generate various forms
» Things to watch out for



What is it?

» A mapping between affine spaces
» Preserves lines (& planes)
» Preserves parallel lines
» But not angles or distances
» Can represent as

» (note we’re using column vectors)

T(x) =Ax + y



Affine Space

» Collection of points and vectors 
» Can be represented using frame

» Within frame, vector and point
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Affine Transformation

» Key idea: map from space to space by 
using frames

» Note how axes change (A)
» Note how origin changes (y)

T(x) =Ax + y



Example: Translation

» Axes don’t change
» Origin moves by y

y

yxx +=)(T



Example: Rotation

» Axes change
» Origin doesn’t move

» But what is A?

Axx =)(T



Example: Rotation

» Follow the axes:

» New axes go in columns of matrix
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Example: Scale

» Axes change
» Origin doesn’t move

» Again, what is A?

Axx =)(T



Example: Scale

» Follow the axes:

» New axes go in columns of matrix

(0, 0.5)

(1.5, 0)

⎥
⎦

⎤
⎢
⎣

⎡
=

5.00
05.1

A



Example: Reflection

» Axes change
» Origin doesn’t move

» But what, oh what, is A?

Axx =)(T



Example: Reflection

» Follow the axes:

» New axes go in columns of matrix
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Example: Shear

» Axes change
» Origin doesn’t move

» Hey, hey, what is A?

Axx =)(T



Example: Shear

» Follow the axes:

» New axes go in columns of matrix
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Transform Types

» Rigid-body transformation
Translation
Rotation

» Deformable transformation
Scale
Reflection
Shear



Combining Transforms

» Simple function composition
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Combining Transforms

» Order is important!
» Scale, then rotate



Combining Transforms

» Order is important!
» Rotate, then scale



Local and World Frames

» Objects built in local frame
» Want to place in world frame
» Local-to-world transformation

» Same basic idea: determine where axes 
and origin end up in world frame



World to Local Frame

» Similar, but in reverse
» Want transformation relative to local 

frame

» Often easier to just take the inverse
» Example: world-to-view transformation



Inverse

» Reverses the effect of a transformation
» Easy to do with formula:

» For matrix, just use matrix inverse
yAzA(z)T
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Matrix Form

» Necessary for many APIs
» Is easy

» Concatenate by matrix multiply
» Can be faster on vector architectures
» Takes more storage, though



Object-centered Transform

» Often get this case
» Already have local-to-world transform

» Want rotate/scale/whatever around local 
origin, not world origin

» How?



Object-Oriented Transform

» One way
» Translate to origin
» Rotate there
» Translate back



Object-Oriented Transform

» Using formula:
» Translate to origin

» Rotate there

» Translate back

» This works with arbitrary center in world 
frame!
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Alternate Format

» Problem: want to
Translate object in space and change 
rotation and scale arbitrarily
Handle rotation/scale separately

» Can’t do easily with matrix format or   
Ax + y form

» Involves SVD, Polar decomposition
» Messy, but we can do better using…



Rigid Body Transforms

» Any sequence of translation and rotation 
transformations

» Not scale, reflection or shear
» Object shape is not affected (preserves 

angles and lengths)
» Usually include uniform scale despite 

this



Alternate Format

» Scale – one uniform scale factor s
» Rotation – matrix R
» Translation – single vector t



Alternate Format

» Want to concatenate transforms T1, T2 in 
this form, or

» Do this by



Alternate Format

» Advantages
Clear what each part does
Easier to change individual elements

» Disadvantages
Eventually have to convert to 4x4 matrix 
anyway for renderer/video card
4x4 faster on vector architecture



Alternate Format

» Matrix conversion



Inverting Rigid Body Xforms
» We can easily invert our rigid body 

transforms symbolically:



Inverting Rigid Body Xforms (2)

» In fact, the result itself may be written 
as a rigid body transform: 
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