

Affine
Transformations

Jim Van Verth
NVIDIA Corporation

(jim@essentialmath.com)

mailto:jim@essentialmath.com

Topics

» What’s an affine transformation?
» How to generate various forms
» Things to watch out for

What is it?

» A mapping between affine spaces
» Preserves lines (& planes)
» Preserves parallel lines
» But not angles or distances
» Can represent as

» (note we’re using column vectors)

T(x) =Ax + y

Affine Space

» Collection of points and vectors
» Can be represented using frame

» Within frame, vector and point

j = (0,1)

O i = (1,0)

Oyx
yx
++=

+=
jix
jiv

Affine Transformation

» Key idea: map from space to space by
using frames

» Note how axes change (A)
» Note how origin changes (y)

T(x) =Ax + y

Example: Translation

» Axes don’t change
» Origin moves by y

y

yxx +=)(T

Example: Rotation

» Axes change
» Origin doesn’t move

» But what is A?

Axx =)(T

Example: Rotation

» Follow the axes:

» New axes go in columns of matrix

θ
θ

(cos θ, sin θ)

(-sin θ, cos θ)

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

cossin
sincos

A

Example: Scale

» Axes change
» Origin doesn’t move

» Again, what is A?

Axx =)(T

Example: Scale

» Follow the axes:

» New axes go in columns of matrix

(0, 0.5)

(1.5, 0)

⎥
⎦

⎤
⎢
⎣

⎡
=

5.00
05.1

A

Example: Reflection

» Axes change
» Origin doesn’t move

» But what, oh what, is A?

Axx =)(T

Example: Reflection

» Follow the axes:

» New axes go in columns of matrix

⎥
⎦

⎤
⎢
⎣

⎡−
=

10
01

A

(-1, 0)

(0, 1)

Example: Shear

» Axes change
» Origin doesn’t move

» Hey, hey, what is A?

Axx =)(T

Example: Shear

» Follow the axes:

» New axes go in columns of matrix

⎥
⎦

⎤
⎢
⎣

⎡
=

10
5.01

A

(0.5, 1)

(1, 0)

Transform Types

» Rigid-body transformation
Translation
Rotation

» Deformable transformation
Scale
Reflection
Shear

Combining Transforms

» Simple function composition

zByBAx
zyAxBx

zBww
yAxx

++=
++=

+=
+=

)())((
)(
)(

TS
S
T

Combining Transforms

» Order is important!
» Scale, then rotate

Combining Transforms

» Order is important!
» Rotate, then scale

Local and World Frames

» Objects built in local frame
» Want to place in world frame
» Local-to-world transformation

» Same basic idea: determine where axes
and origin end up in world frame

World to Local Frame

» Similar, but in reverse
» Want transformation relative to local

frame

» Often easier to just take the inverse
» Example: world-to-view transformation

Inverse

» Reverses the effect of a transformation
» Easy to do with formula:

» For matrix, just use matrix inverse
yAzA(z)T

y)(zAx
yzAx

zyAx

111

1

−−−

−

−=

−=

−=
=+

Matrix Form

» Necessary for many APIs
» Is easy

» Concatenate by matrix multiply
» Can be faster on vector architectures
» Takes more storage, though

Object-centered Transform

» Often get this case
» Already have local-to-world transform

» Want rotate/scale/whatever around local
origin, not world origin

» How?

Object-Oriented Transform

» One way
» Translate to origin
» Rotate there
» Translate back

Object-Oriented Transform

» Using formula:
» Translate to origin

» Rotate there

» Translate back

» This works with arbitrary center in world
frame!

yz(z) −=T

ByBzy)B(zz −=−=))((TS

B)y(IBzyBy)(Bzz −+=+−=)))(((TSR

Alternate Format

» Problem: want to
Translate object in space and change
rotation and scale arbitrarily
Handle rotation/scale separately

» Can’t do easily with matrix format or
Ax + y form

» Involves SVD, Polar decomposition
» Messy, but we can do better using…

Rigid Body Transforms

» Any sequence of translation and rotation
transformations

» Not scale, reflection or shear
» Object shape is not affected (preserves

angles and lengths)
» Usually include uniform scale despite

this

Alternate Format

» Scale – one uniform scale factor s
» Rotation – matrix R
» Translation – single vector t

Alternate Format

» Want to concatenate transforms T1, T2 in
this form, or

» Do this by

Alternate Format

» Advantages
Clear what each part does
Easier to change individual elements

» Disadvantages
Eventually have to convert to 4x4 matrix
anyway for renderer/video card
4x4 faster on vector architecture

Alternate Format

» Matrix conversion

Inverting Rigid Body Xforms
» We can easily invert our rigid body

transforms symbolically:

Inverting Rigid Body Xforms (2)

» In fact, the result itself may be written
as a rigid body transform:

References

» Van Verth, James M. and Lars M. Bishop,
Essential Mathematics for Games and
Interactive Applications, 2nd Ed, Morgan
Kaufmann, 2008.

» Rogers, F. David and J. Alan Adams,
Mathematical Elements for Computer Graphics,
2nd Ed, McGraw-Hill, 1990.

» Watt, Alan, 3D Computer Graphics, Addison-
Wesley, Wokingham, England, 1993.

	Slide Number 1
	Affine Transformations
	Topics
	What is it?
	Affine Space
	Affine Transformation
	Example: Translation
	Example: Rotation
	Example: Rotation
	Example: Scale
	Example: Scale
	Example: Reflection
	Example: Reflection
	Example: Shear
	Example: Shear
	Transform Types
	Combining Transforms
	Combining Transforms
	Combining Transforms
	Local and World Frames
	World to Local Frame
	Inverse
	Matrix Form
	Object-centered Transform
	Object-Oriented Transform
	Object-Oriented Transform
	Alternate Format
	Rigid Body Transforms
	Alternate Format
	Alternate Format
	Alternate Format
	Alternate Format
	Inverting Rigid Body Xforms
	Inverting Rigid Body Xforms (2)
	References

