

High Quality Direct3D
10.0 & 10.1 Accelerated

Techniques

Jon Story, AMD
Holger Gruen, AMD

Agenda

» High Definition Ambient Occlusion
» High Quality Shadow Filtering

High Definition Ambient Occlusion
(HDAO)

Conventional AO : 1

» Compute camera space position
from screen XY and depth

» Offset to a group of 3D positions
arranged in a sphere

» Transform to post-perspective
space and test against depth

» Occlusion Factor ~= Failure Rate

Occlusion = 1/2Occlusion = 3/4

» Executed as a fullscreen post
processing pass

Conventional AO : 2

» Usually requires many depth
samples to achieve acceptable
results

» Maths overhead per sample is high
! Transform to post-perspective space
! Depth testing
! Result attenuation

» Filtering pass almost essential to
smooth out dithering and banding
artifacts

The Aim of HDAO

» Deliver a believable AO look
» Achieve affordable performance on

today‘s HW
» Avoid need for filtering pass(es)

! Keep performance higher
! No additional render targets required

» Easy to incorporate
! No normals required
! Account for normals with ease if

available

How does HDAO Fit into
the Rendering Pipeline?
» Use depth (and normals) as

input(s) to AO shader
» Finally combine AO buffer with

original scene
» Render scene as usual
» Optionally render normals as part

of an MRT setup

+

How does HDAO Work?

» If both twins fall within a specified
radius, and are closer to the
camera than the central pixel, then
we have detected a valley

Valley = falseValley = true

» Sample a twin pair of pixels,
mirrored through the central pixel,
and record their camera z values

» Still a fullscreen post processing
pass

» Detects valleys in camera Z space

» Sample the central pixel of interest
and record its camera Z value

» Also detects occlusion between
objects that are close to each
other

» Not _only_ creases ☺

Valley Detection

» The simplest implementation
would be a 3x3 sample pattern

» Start by sampling the central
depth pixel, and converting to
camera Z

» Perform a valley test for each twin
pair of (mirrored) samples

» Valley test produces binary result

Occlusion Factor += Valley TestCredit to Holger Gruen for this idea

How does Gather Work?

» Gather fetches 4 point sampled
texels in a single instruction

» Available on all Direct3D 10.1 & 11
hardware

» Used on single channel formats
(restriction gone for DX11)
! depth buffer
! Shadow maps W

X Y

Z
f4Depth = DepthTex.Gather(SamPoint, f2Coord);

(0, 0) (1, 0)

(0, 1) (1, 1)

» Similar to Fetch4 exposed on DX9
ATI GPUs

» There are known issues in previous
versions of the HLSL compiler

» Must use March 2009 SDK or later

Direct3D 10.0 Version of
Gather

// Direct3D 10.1
f4Ret = Tex.Gather(g_SamplePoint, f2TexCoord);

// Direct3D 10.0
f4Ret.x = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(0, 1)).x;
f4Ret.y = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(1, 1)).x;
f4Ret.z = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(1, 0)).x;
f4Ret.w = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(0, 0)).x;

» Be sure to get the integer offsets
correct for the 4 samples

Gather Pattern

» It would be ideal to accelerate
depth sampling using Gather

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

» Each Gather should tessellate
around center pixel

» Each Gather needs to have a
mirrored twin

» Simply add additional rings of
Gathers

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

W
X Y

Z

» To perfectly mirror samples, only
requires a swizzle xyzw with zwxy

Natural Vectorization
for(iGather=0; iGather<NUM_GATHERS; iGather++)

{

// Gather mirrored twin depth samples (and convert to camera Z)

f4SampledZ[0] = DepthTex.Gather(SamPoint, f2TexCoord);

f4SampledZ[0] = -g_fQTimesZNear / (f4SampledZ[0] - g_fQ);

f4SampledZ[1] = DepthTex.Gather(SamPoint, f2MirrorTexCoord);

f4SampledZ[1] = -g_fQTimesZNear / (f4SampledZ[1] - g_fQ);

// Detect valleys

// First twin

f4Diff = fCenterZ.xxxx - f4SampledZ[0];

f4Compare[0] = (f4Diff < g_fHDAORejectRadius.xxxx) ? (1.0f) : (0.0f);

f4Compare[0] *= (f4Diff > g_fHDAOAcceptRadius.xxxx) ? (1.0f) : (0.0f);

// Mirrored twin

f4Diff = fCenterZ.xxxx - f4SampledZ[1];

f4Compare[1] = (f4Diff < g_fHDAORejectRadius.xxxx) ? (1.0f) : (0.0f);

f4Compare[1] *= (f4Diff > g_fHDAOAcceptRadius.xxxx) ? (1.0f) : (0.0f);

// Accumulate occlusion factor

f4Occlusion.xyzw += (g_f4RingWeight[iGather].xyzw * f4Compare[0].xyzw *
f4Compare[1].zwxy);

}

We Gather 4 samples at
onceWe efficiently convert 4

depth samples to camera
space

We perform the valley
detection logic on 4 valleys

at once

Finally we weight and store
the occlusion factor of 4

valleys at a time

HDAO Code Sample
HDAO Buffer (depth only)
– 40 Gathers
– No filtering needed

HDAO On (depth only)HDAO Off

Bringing in Camera Space
Normals

» HDAO easily accounts for normals
» Scale Z component of camera

space normal by desired amount
» Add scaled normal to camera Z

value
» Run valley detection code as

before

// Offset by scaled normal
f4CameraZ += (f4NormalZ * g_fNormalScale);

HDAO Buffer (depth & normals)
- 80 Gathers (could use alot less)
- No filtering needed

HDAO On (depth only)HDAO On (depth & normals)

Early Rejection Test

» Low density meshes can produce
undesireable occlusion
! Terrain
! Sky dome

» Calculate the angle of the valley
» Reject if too shallow

Pass Fail

» For smooth normals, compute
angle between them

» Or compute direction vectors from
full camera space positions

» Dramatically increase performance

Performance
» HDAO (depth only):

! Direct3D 10.0: 0.16 MS
! Direct3D 10.1: 0.059 MS

HDAO Off HDAO Depth
HDAO Depth +

Normals

Direct3D 10.0 415 389 246

Direct3D 10.1 415 405 389

0
50

100
150
200
250
300
350
400
450

F
P

S

HDAO 10.0 vs 10.1
(1280x1024x1)

Phenom 2.3GHz, HD4870X2, 2 GB RAM, Windows Vista 32 (SP1)

» HDAO (depth and normals):
! Direct3D 10.0: 1.65 MS
! Direct3D 10.1: 0.16 MS

HDAO is only applied to the
terrain and buildings (not

the aeroplane)

Tom Clancy‘s HAWX
Publisher: Ubisoft

Developer: Ubisoft Romania

Stormrise
Publisher: SEGA

Developer: The Creative Assembly Australia

BattleForge
Publisher: EA

Developer: EA Phenomic

Future Work

» Looking into a compute shader
accelerated version
! Solid sampling pattern lends itself

well to Thread Local Storage

» Account for strong light sources
! AO for many scenes is not low

frequency

» Real valley tracing...

High Quality Shadow Filtering

Direct3D 10.1

How Direct3D 10.1 helps
filtering

Direct3D 10.0

NxN point samples if
you need all data points

– e.g. 4x4 = 16

for single channel textures

x y

zw w z

yx

w z

yx

w z

yx

(N/2)x(N/2) Gather
operations get all data

- e.g. 2x2 = 4

Why revisit conventional
shadow filtering? - 1

» There are advanced techniques for
smooth shadows
» The most prominent are

» VSMs, layered VSMs, CSMs, ESMs, ACDF SMs

» Can be combined with SATs for arbitary
smoothness

» But these methods bring other problems
» The renderer gets more complex

» May need to work around specific artifacts

» Use only if neccessary

Why revisit conventional
shadow filtering? - 2

» Advanced methods come at a cost
» More RTs at a high memory cost

» Costly postprocessing operations

» Non optimal RT formats

» Is an advanced techique needed?
» Depth buffer based deferred shadowing does

not depend on depth complexity

» Big conventional shadow filters not that
expensive

Surprising insights about
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations
plus some ALU –

(N/2)x(N/2) Gather ops
for NxN

Direct3D 10.0

9 PCF samples plus
some ALU right ?

Surprising insights about
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations
plus some ALU –

(N/2)x(N/2) Gather ops
for NxN

Direct3D 10.0

9 PCF samples plus
some ALU right ?

NO!

4 shifted PCF samples plus
a post weight factor is

enough => (N/2)x(N/2)
PCF samples for NxN

Surprising insights about
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations
plus some ALU =>

(N/2)x(N/2) Gather()
samples for NxN

Direct3D 10.0

Surprising insights about
uniform shadow filtering 2
Let’s look at only 1 row of 4 visibility samples

v0 v1 v2 v3

10)1(vxvx ⋅+⋅− 21)1(vxvx ⋅+⋅− 32)1(vxvx ⋅+⋅−+ +

3210)1(vxvvvx ⋅+++⋅−

Simplifies to

10)1(vvx +⋅− 32 vxv ⋅+

v0 v1 v2 v3

Credit for this idea goes to: Sergey Nenakhov at Funcom

()10)1(vxvxpw ⋅′+⋅′−⋅ + ()32)1(vxvxpw ⋅′+′−⋅

Surprising insights about
uniform shadow filtering 3

» Only (N/2)x(N/2) PCF samples
necessary instead for a uniform filter

» Cheaper than commonly assumed
» 8x8 with only 16 PCF samples

» Not only for shadow filtering

» Same texture op count as Direct3D 10.1
» Why bother with Direct3D 10.1?

From DICE’s Frostbite Engine:
Uniform shadow filtering

From DICE’s Frostbite Engine:
Gaussian shadow filtering

Disadvantages of uniform
shadow filtering

Uniform filtering
blurs away too
many details

Gaussian filtering
preserves more
details

Advanced Direct3D 10.1
shadow filtering 1

Use a unique weight per PCF sample

Advanced Direct3D 10.1
shadow filtering 1

Use a unique weight per PCF sample

Advanced Direct3D 10.1
shadow filtering 1

∑

∑
−⋅−

=

−⋅−

=

⋅

)1()1(

0

)1()1(

0
NN

k
k

NN

k
kk

w

pcfw

Use a unique weight per PCF sample

Advanced Direct3D 10.1
shadow filtering 2

» Direct3D 10.1 needs (N/2)x(N/2)
Gather() samples

» A (N/2)x(N/2) PCF samples solution is
no longer possible for unique weights
» Filter weights are not symmetric

» Equation system not solvable

» It is possible to get below NxN PCF ops for
Direct3D 10.0 though

Advanced Direct3D 10.1
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block
using unique weights

4 Gather() operations
plus some ALU =>
(N/2)x(N/2) Gather

samples for NxN

Direct3D 10.0

9 PCF samples plus
some ALU right ?

Advanced Direct3D 10.1
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block
using unique weights

4 Gather() samples plus
some ALU =>

(N/2)x(N/2) Gather()
samples for NxN

Direct3D 10.0

9 PCF samples plus
some ALU right ?

NO!

Advanced Direct3D 10.1
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block
using unique weights

4 Gather() samples plus
some ALU =>

(N/2)x(N/2) Gather()
samples for NxN

Direct3D 10.0

6 shifted PCF samples
plus post weight factors is
enough => (N/2)x(N-1)

PCF samples for NxN

Advanced Direct3D 10.1
shadow filtering 4
v0 v2v1 v3 v5v4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

1

0
0

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

2

1
1

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

3

2
2

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w+ + + +

()() 2-N1-N

2

1
1k00 wv+vvx)-(1 ⋅⋅⎟

⎠

⎞
⎜
⎝

⎛
+⋅−⋅+⋅⋅ ∑

−

=
− xwxwww

N

k
kkk

v0 v2v1 v3 v5v4

() () 000
' 11 vwxvwpx ⋅⋅−=⋅⋅−

()()11011
' wwwxvvwpx +−⋅⋅=⋅⋅

()
()⎟⎟⎠

⎞
⎜⎜
⎝

⎛

−⋅+⋅

+⋅⋅−

)(11

1

10

00

wwxwv

wvx
left

()
011

101'

wwxw
wxwwx

−−⋅
−⋅−

=

011 wwxwwp ++⋅−=

Advanced Direct3D 10.1
shadow filtering 4
v0 v2v1 v3 v5v4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

1

0
0

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

2

1
1

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

3

2
2

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w+ + + +

()() 2-N1-N

2

1
1k00 wv+vvx)-(1 ⋅⋅⎟

⎠

⎞
⎜
⎝

⎛
+⋅−⋅+⋅⋅ ∑

−

=
− xwxwww

N

k
kkk

v0 v2v1 v3 v5v4

()
()⎟⎟⎠

⎞
⎜⎜
⎝

⎛

−⋅+⋅

+⋅⋅−

)(11

1

10

00

wwxwv

wvx
left

()()
()()⎟⎟⎠

⎞
⎜⎜
⎝

⎛
+−⋅⋅

++−⋅⋅

+++

−

111

1

kkkk

kkkk

wwwxv
wwwxv

center

() ()()kkkkk wwwxvvwpx +−⋅⋅=⋅⋅− −1
'1

()()1111
'

++++ +−⋅⋅=⋅⋅ kkkkk wwwxvvwpx

()
() kkkk

kkk

wwxww
wxwwx
−−⋅−

−⋅−
=

+−+

++

111

11'

() kkkk wwxwwwp ++⋅−= ++− 111

Advanced Direct3D 10.1
shadow filtering 4
v0 v2v1 v3 v5v4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

1

0
0

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

2

1
1

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

3

2
2

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅−
⋅

4

3
3

)1(
vx

vx
w+ + + +

()() 2-N1-N

2

1
1k00 wv+vvx)-(1 ⋅⋅⎟

⎠

⎞
⎜
⎝

⎛
+⋅−⋅+⋅⋅ ∑

−

=
− xwxwww

N

k
kkk

v0 v2v1 v3 v5v4

()
()⎟⎟⎠

⎞
⎜⎜
⎝

⎛

−⋅+⋅

+⋅⋅−

)(11

1

10

00

wwxwv

wvx
left

()()
()()⎟⎟⎠

⎞
⎜⎜
⎝

⎛
+−⋅⋅

++−⋅⋅

+++

−

111

1

kkkk

kkkk

wwwxv
wwwxv

center
()()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

++−⋅⋅

−−

−−−−

11

1122

NN

NNNN

vwx
wwwxv

right

() ()()11222
'1 −−−−− +−⋅⋅=⋅⋅− NNNNN wwwxvvwpx

111
'

−−− ⋅⋅=⋅⋅ NNN vwxvwpx
12

1'

−−

−

+⋅
⋅

=
NN

N

wxw
xwx

12 −− +⋅= NN wxwwp

Advanced Direct3D 10.1
shadow filtering 5

» Direct3D 10.0
» needs (N/2)x(N-1) PCF samples for Gaussian

shadows – not (N-1)x(N-1)!

» can do one row with (N/2) samples with
shifted x texture coords

» y texture coord stays untouched

» Stats of an optimized shader for 8x8
» Direct3D 10.1 shader roughly twice as fast as

the Direct3D10.0 version

» Direct3D 10.1 shader as fast as the optimized
uniform (N/2)x(N/2) filter under Direct3D10.0

From DICE’s Frostbite Engine:
Standard 2x2 shadow filtering

From DICE’s Frostbite Engine:
5x5 Gaussian filtering

Tom Clancy‘s HAWX
Publisher: Ubisoft
Developer: Ubisoft Romania
Normal Quality – Blurred VSM

Tom Clancy‘s HAWX
Publisher: Ubisoft
Developer: Ubisoft Romania
Gaussian Shadows

Stormrise, Publisher: SEGA
Developer: The Creative Assembly Australia

Normal Shadow Quality

Stormrise, Publisher: SEGA
Developer: The Creative Assembly Australia

Gaussian Shadows

Summary: 1

» HDAO adds enourmous depth to the
scene, at an affordable cost

» Using Direct3D 10.1 gather4 instruction
greatly accelerates performance

» Growing number of game developers
using the effect

» Mail jon.story@amd.com if you would
like to know more...

mailto:jon.story@amd.com

Summary: 2

» Conventional high quality shadow
filtering is suprisingly fast
» Even under Direct3D 10.0/9

» Direct3D 10.1 delivers the best
performance
» No reason not to use gaussian shadows!

» Direct3D 11 supports Gather()!

» Mail holger.gruen@amd.com if you want
the shaders or the derivations for
(N/2)x(N/2) PCF sample shadows

mailto:holger.gruen@amd.com

Questions?

Please fill in the feedback forms...

	Slide Number 1
	Slide Number 2
	Agenda
	Slide Number 4
	Conventional AO : 1
	Conventional AO : 2
	The Aim of HDAO
	How does HDAO Fit into the Rendering Pipeline?
	How does HDAO Work?
	Valley Detection
	How does Gather Work?
	Direct3D 10.0 Version of Gather
	Gather Pattern
	Natural Vectorization
	HDAO Code Sample
	Bringing in Camera Space Normals
	Slide Number 17
	Early Rejection Test
	Performance
	Tom Clancy‘s HAWX�Publisher: Ubisoft�Developer: Ubisoft Romania��
	Stormrise�Publisher: SEGA�Developer: The Creative Assembly Australia
	BattleForge�Publisher: EA�Developer: EA Phenomic
	Future Work
	Slide Number 24
	How Direct3D 10.1 helps filtering
	Why revisit conventional shadow filtering? - 1
	Why revisit conventional shadow filtering? - 2
	Surprising insights about uniform shadow filtering 1
	Surprising insights about uniform shadow filtering 1
	Surprising insights about uniform shadow filtering 1
	Surprising insights about uniform shadow filtering 2
	Surprising insights about uniform shadow filtering 3
	From DICE’s Frostbite Engine:�Uniform shadow filtering
	From DICE’s Frostbite Engine:�Gaussian shadow filtering
	Disadvantages of uniform shadow filtering
	Advanced Direct3D 10.1 shadow filtering 1
	Advanced Direct3D 10.1 shadow filtering 1
	Advanced Direct3D 10.1 shadow filtering 1
	Advanced Direct3D 10.1 shadow filtering 2
	Advanced Direct3D 10.1 shadow filtering 3
	Advanced Direct3D 10.1 shadow filtering 3
	Advanced Direct3D 10.1 shadow filtering 3
	Advanced Direct3D 10.1 shadow filtering 4
	Advanced Direct3D 10.1 shadow filtering 4
	Advanced Direct3D 10.1 shadow filtering 4
	Advanced Direct3D 10.1 shadow filtering 5
	Slide Number 47
	Slide Number 48
	Tom Clancy‘s HAWX�Publisher: Ubisoft�Developer: Ubisoft Romania�Normal Quality – Blurred VSM�
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Summary: 1
	Summary: 2
	Questions?��Please fill in the feedback forms...

