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Agenda

» High Definition Ambient Occlusion 
» High Quality Shadow Filtering



High Definition Ambient Occlusion
(HDAO)



Conventional AO : 1

» Compute camera space position 
from screen XY and depth

» Offset to a group of 3D positions 
arranged in a sphere

» Transform to post-perspective 
space and test against depth

» Occlusion Factor ~= Failure Rate

Occlusion = 1/2Occlusion = 3/4

» Executed as a fullscreen post 
processing pass



Conventional AO : 2

» Usually requires many depth 
samples to achieve acceptable 
results

» Maths overhead per sample is high
! Transform to post-perspective space
! Depth testing
! Result attenuation

» Filtering pass almost essential to 
smooth out dithering and banding 
artifacts



The Aim of HDAO

» Deliver a believable AO look
» Achieve affordable performance on 

today‘s HW
» Avoid need for filtering pass(es)

! Keep performance higher
! No additional render targets required

» Easy to incorporate
! No normals required
! Account for normals with ease if 

available



How does HDAO Fit into 
the Rendering Pipeline?
» Use depth (and normals) as 

input(s) to AO shader
» Finally combine AO buffer with 

original scene
» Render scene as usual
» Optionally render normals as part 

of an MRT setup

+



How does HDAO Work?

» If both twins fall within a specified 
radius, and are closer to the 
camera than the central pixel, then 
we have detected a valley

Valley = falseValley = true

» Sample a twin pair of pixels, 
mirrored through the central pixel, 
and record their camera z values

» Still a fullscreen post processing 
pass

» Detects valleys in camera Z space

» Sample the central pixel of interest 
and record its camera Z value

» Also detects occlusion between 
objects that are close to each 
other

» Not _only_ creases ☺



Valley Detection

» The simplest implementation 
would be a 3x3 sample pattern

» Start by sampling the central 
depth pixel, and converting to 
camera Z

» Perform a valley test for each twin 
pair of (mirrored) samples

» Valley test produces binary result

Occlusion Factor += Valley TestCredit to Holger Gruen for this idea



How does Gather Work?

» Gather fetches 4 point sampled 
texels in a single instruction

» Available on all Direct3D 10.1 & 11 
hardware

» Used on single channel formats 
(restriction gone for DX11)
! depth buffer
! Shadow maps W

X Y

Z
f4Depth = DepthTex.Gather( SamPoint, f2Coord );

( 0, 0 ) ( 1, 0 )

( 0, 1 ) ( 1, 1 )

» Similar to Fetch4 exposed on DX9 
ATI GPUs

» There are known issues in previous 
versions of the HLSL compiler

» Must use March 2009 SDK or later



Direct3D 10.0 Version of 
Gather

// Direct3D 10.1
f4Ret = Tex.Gather( g_SamplePoint, f2TexCoord );

// Direct3D 10.0
f4Ret.x = Tex.SampleLevel( g_SamplePoint, f2TexCoord, 0, int2( 0, 1 ) ).x;
f4Ret.y = Tex.SampleLevel( g_SamplePoint, f2TexCoord, 0, int2( 1, 1 ) ).x;
f4Ret.z = Tex.SampleLevel( g_SamplePoint, f2TexCoord, 0, int2( 1, 0 ) ).x;
f4Ret.w = Tex.SampleLevel( g_SamplePoint, f2TexCoord, 0, int2( 0, 0 ) ).x;

» Be sure to get the integer offsets 
correct for the 4 samples



Gather Pattern

» It would be ideal to accelerate 
depth sampling using Gather
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» Each Gather should tessellate 
around center pixel

» Each Gather needs to have a 
mirrored twin

» Simply add additional rings of 
Gathers
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» To perfectly mirror samples, only 
requires a swizzle xyzw with zwxy



Natural Vectorization
for( iGather=0; iGather<NUM_GATHERS; iGather++ )

{

// Gather mirrored twin depth samples (and convert to camera Z)

f4SampledZ[0] = DepthTex.Gather( SamPoint, f2TexCoord );

f4SampledZ[0] = -g_fQTimesZNear / (f4SampledZ[0] - g_fQ ); 

f4SampledZ[1] = DepthTex.Gather( SamPoint, f2MirrorTexCoord );

f4SampledZ[1] = -g_fQTimesZNear / (f4SampledZ[1] - g_fQ ); 

// Detect valleys

// First twin

f4Diff = fCenterZ.xxxx - f4SampledZ[0];

f4Compare[0] = ( f4Diff < g_fHDAORejectRadius.xxxx ) ? ( 1.0f ) : ( 0.0f );

f4Compare[0] *= ( f4Diff > g_fHDAOAcceptRadius.xxxx ) ? ( 1.0f ) : ( 0.0f );

// Mirrored twin

f4Diff = fCenterZ.xxxx - f4SampledZ[1];

f4Compare[1] = ( f4Diff < g_fHDAORejectRadius.xxxx ) ? ( 1.0f ) : ( 0.0f );

f4Compare[1] *= ( f4Diff > g_fHDAOAcceptRadius.xxxx ) ? ( 1.0f ) : ( 0.0f );

// Accumulate occlusion factor

f4Occlusion.xyzw += ( g_f4RingWeight[iGather].xyzw * f4Compare[0].xyzw * 
f4Compare[1].zwxy );

}

We Gather 4 samples at 
onceWe efficiently convert 4 

depth samples to camera 
space 

We perform the valley 
detection logic on 4 valleys 

at once 

Finally we weight and store 
the occlusion factor of 4 

valleys at a time



HDAO Code Sample
HDAO Buffer (depth only)
– 40 Gathers
– No filtering needed

HDAO On (depth only)HDAO Off



Bringing in Camera Space 
Normals

» HDAO easily accounts for normals
» Scale Z component of camera 

space normal by desired amount
» Add scaled normal to camera Z 

value
» Run valley detection code as 

before

// Offset by scaled normal
f4CameraZ += ( f4NormalZ * g_fNormalScale );



HDAO Buffer (depth & normals)
- 80 Gathers (could use alot less)
- No filtering needed

HDAO On (depth only)HDAO On (depth & normals)



Early Rejection Test

» Low density meshes can produce 
undesireable occlusion
! Terrain
! Sky dome

» Calculate the angle of the valley
» Reject if too shallow

Pass Fail

» For smooth normals, compute 
angle between them

» Or compute direction vectors from 
full camera space positions

» Dramatically increase performance



Performance
» HDAO (depth only): 

! Direct3D 10.0: 0.16 MS 
! Direct3D 10.1: 0.059 MS

HDAO Off HDAO Depth
HDAO Depth + 

Normals

Direct3D 10.0 415 389 246

Direct3D 10.1 415 405 389
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HDAO 10.0 vs 10.1 
(1280x1024x1)

Phenom 2.3GHz, HD4870X2, 2 GB RAM, Windows Vista 32 (SP1)

» HDAO (depth and normals): 
! Direct3D 10.0: 1.65 MS 
! Direct3D 10.1: 0.16 MS



HDAO is only applied to the 
terrain and buildings (not 

the aeroplane)

Tom Clancy‘s HAWX
Publisher: Ubisoft

Developer: Ubisoft Romania



Stormrise
Publisher: SEGA

Developer: The Creative Assembly Australia



BattleForge
Publisher: EA

Developer: EA Phenomic



Future Work

» Looking into a compute shader 
accelerated version
! Solid sampling pattern lends itself 

well to Thread Local Storage

» Account for strong light sources
! AO for many scenes is not low 

frequency

» Real valley tracing...



High Quality Shadow Filtering



Direct3D 10.1

How Direct3D 10.1 helps 
filtering

Direct3D 10.0

NxN  point samples if 
you need all data points 

– e.g. 4x4 = 16

for single channel textures

x y

zw w z

yx

w z

yx

w z

yx

(N/2)x(N/2) Gather 
operations get all data  

- e.g. 2x2 = 4



Why revisit conventional 
shadow filtering? - 1

» There are advanced techniques for 
smooth shadows
» The most prominent are 

» VSMs, layered VSMs, CSMs, ESMs, ACDF SMs

» Can be combined with SATs for arbitary 
smoothness

» But these methods bring other problems
» The renderer gets more complex

» May need to work around specific artifacts

» Use only if neccessary



Why revisit conventional 
shadow filtering? - 2

» Advanced methods come at a cost
» More RTs at a high memory cost

» Costly postprocessing operations

» Non optimal RT formats 

» Is an advanced techique needed?
» Depth buffer based deferred shadowing does 

not depend on depth complexity

» Big conventional shadow filters not that 
expensive



Surprising insights about 
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations 
plus some ALU –

(N/2)x(N/2) Gather ops 
for NxN

Direct3D 10.0

9 PCF samples plus 
some ALU right ?



Surprising insights about 
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations 
plus some ALU –

(N/2)x(N/2) Gather ops 
for NxN

Direct3D 10.0

9 PCF samples plus 
some ALU right ?

NO!



4 shifted PCF samples plus 
a post weight factor is 

enough => (N/2)x(N/2) 
PCF samples for NxN

Surprising insights about 
uniform shadow filtering 1

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block

4 Gather operations 
plus some ALU => 

(N/2)x(N/2) Gather() 
samples for NxN

Direct3D 10.0



Surprising insights about 
uniform shadow filtering 2
Let’s look at only 1 row of 4 visibility samples

v0 v1 v2 v3

10)1( vxvx ⋅+⋅− 21)1( vxvx ⋅+⋅− 32)1( vxvx ⋅+⋅−+ +

3210)1( vxvvvx ⋅+++⋅−

Simplifies to

10)1( vvx +⋅− 32 vxv ⋅+

v0 v1 v2 v3

Credit for this idea goes to: Sergey Nenakhov at Funcom

( )10)1( vxvxpw ⋅′+⋅′−⋅ + ( )32)1( vxvxpw ⋅′+′−⋅



Surprising insights about 
uniform shadow filtering 3

» Only (N/2)x(N/2) PCF samples 
necessary instead for a uniform filter

» Cheaper than commonly assumed
» 8x8 with only 16 PCF samples

» Not only for shadow filtering

» Same texture op count as Direct3D 10.1
» Why bother with Direct3D 10.1?



From DICE’s Frostbite Engine:
Uniform shadow filtering



From DICE’s Frostbite Engine:
Gaussian shadow filtering



Disadvantages of uniform 
shadow filtering

Uniform filtering 
blurs away too 
many details

Gaussian filtering 
preserves more 
details



Advanced Direct3D 10.1 
shadow filtering 1

Use a unique weight per PCF sample



Advanced Direct3D 10.1 
shadow filtering 1

Use a unique weight per PCF sample



Advanced Direct3D 10.1 
shadow filtering 1
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Advanced Direct3D 10.1 
shadow filtering 2

» Direct3D 10.1 needs (N/2)x(N/2) 
Gather() samples 

» A (N/2)x(N/2) PCF samples solution is 
no longer possible for unique weights
» Filter weights are not symmetric

» Equation system not solvable

» It is possible to get below NxN PCF ops for 
Direct3D 10.0 though



Advanced Direct3D 10.1 
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block 
using unique weights

4 Gather() operations 
plus some ALU => 
(N/2)x(N/2) Gather 

samples for NxN

Direct3D 10.0

9 PCF samples plus 
some ALU right ?



Advanced Direct3D 10.1 
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block 
using unique weights

4 Gather() samples plus 
some ALU => 

(N/2)x(N/2) Gather() 
samples for NxN

Direct3D 10.0

9 PCF samples plus 
some ALU right ?

NO!



Advanced Direct3D 10.1 
shadow filtering 3

Direct3D 10.1

x y

zw w z

yx

w z

yx

w z

yx

Let’s filter a 4x4 visibility sample block 
using unique weights

4 Gather() samples plus 
some ALU => 

(N/2)x(N/2) Gather() 
samples for NxN

Direct3D 10.0

6 shifted PCF samples 
plus post weight factors is 
enough => (N/2)x(N-1) 

PCF samples for NxN



Advanced Direct3D 10.1 
shadow filtering 4
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Advanced Direct3D 10.1 
shadow filtering 4
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Advanced Direct3D 10.1 
shadow filtering 4
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Advanced Direct3D 10.1 
shadow filtering 5

» Direct3D 10.0 
» needs (N/2)x(N-1) PCF samples for Gaussian 

shadows – not (N-1)x(N-1)!

» can do one row with (N/2) samples with 
shifted x texture coords

» y texture coord stays untouched

» Stats of an optimized shader for 8x8
» Direct3D 10.1 shader roughly twice as fast as 

the Direct3D10.0 version

» Direct3D 10.1 shader as fast as the optimized 
uniform (N/2)x(N/2) filter under Direct3D10.0



From DICE’s Frostbite Engine: 
Standard 2x2 shadow filtering



From DICE’s Frostbite Engine:
5x5 Gaussian filtering



Tom Clancy‘s HAWX
Publisher: Ubisoft
Developer: Ubisoft Romania
Normal Quality – Blurred VSM



Tom Clancy‘s HAWX
Publisher: Ubisoft
Developer: Ubisoft Romania
Gaussian Shadows



Stormrise, Publisher: SEGA
Developer: The Creative Assembly Australia

Normal Shadow Quality



Stormrise, Publisher: SEGA
Developer: The Creative Assembly Australia

Gaussian Shadows



Summary: 1

» HDAO adds enourmous depth to the 
scene, at an affordable cost

» Using Direct3D 10.1 gather4 instruction 
greatly accelerates performance

» Growing number of game developers 
using the effect 

» Mail jon.story@amd.com if you would 
like to know more... 

mailto:jon.story@amd.com


Summary: 2

» Conventional high quality shadow 
filtering is suprisingly fast
» Even under Direct3D 10.0/9

» Direct3D 10.1 delivers the best 
performance
» No reason not to use gaussian shadows!

» Direct3D 11 supports Gather()!

» Mail holger.gruen@amd.com if you want 
the shaders or the derivations for 
(N/2)x(N/2) PCF sample shadows

mailto:holger.gruen@amd.com


Questions?

Please fill in the feedback forms...
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