
OpenGL ES 2.0 : Start
Developing Now

Dan Ginsburg
Advanced Micro Devices, Inc.

Agenda

OpenGL ES 2.0
Brief Overview

Tools
OpenGL ES 2.0 Emulator
RenderMonkey w/ OES 2.0 Support

OpenGL ES 2.0 3D Engine Case Study

What is OpenGL ES 2.0?

OpenGL for Embedded Systems
OpenGL ES 2.0

Fully shader-based
Based on ES Shading Language
Draft spec released at SIGGRAPH 05
Spec ratified and released at GDC 07

OpenGL ES 2.0 – Widespread
Industry Support

OpenGL ES 2.0 support announced from
many companies:

AMD
NVIDIA
Imagination Technologies
ARM
...and more…

OpenGL ES 2.0 will become ubiquitous

ES 2.0 – The Problem for
Game Developers

Developers need to develop their game
engines in advance of new hardware
No hardware available today
OpenGL ES 2.0 may require handheld
developers to change their engines
significantly

Shader-based API moves more burden to the
application
Enables more flexibility through
programmability

ES 2.0 – A Development
Solution

OpenGL ES 2.0 Emulator
OpenGL ES 2.0 implementation for Win32
Allows developers to write their engines in
advance of hardware

OpenGL ES 2.0 RenderMonkey
Develop OpenGL ES 2.0 shaders and effects

OpenGL ES 2.0 Emulator

OpenGL ES 2.0 Emulator
Goals

Provide an OpenGL ES 2.0 development
environment on the PC

Minimize porting effort once hardware is
available

Leverage features/performance of
desktop hardware

OpenGL ES 2.0 Emulator –
What is it?

OpenGL ES 2.0 – libGLESv2x.dll + lib
EGL 1.3 – libEGL.dll + lib
Khronos standard header files
Example programs
Utilizes desktop hardware for rendering

Requires desktop OpenGL 2.0 hardware

OpenGL ES 2.0 Emulator –
Usage Overview

Win32 Application Includes:
•GLES2/gl2.h
•EGL/egl.h

Links Against:
•libGLESv2x.lib
•libEGL.lib

Emulator:
•Implements ES 2.0 API
plus extensions
•Implements EGL 1.3 API

libGLESv2x.dll libEGL.dll

Application

OpenGL ES 2.0 Emulator -
Features

OpenGL ES 2.0 Core API
Full OpenGL ES 2.0 Implementation

Optional Extensions:
10.10.10.2 Vertex/Texture Data
FP16 Vertices and Textures
3D and Non-Power-2 Textures
Compressed Texture Formats

ETC1, ETC3, ETC5, ATI_TC
Occlusion and Conditional Queries
Depth Textures

OpenGL ES 2.0 – Demo

OpenGL ES 2.0 Emulator –
Enables Developers

More than just a prototyping tool
Graphics code should move over easily from
emulator to real hardware

Mirrors top tier handheld developer
approaches

Prototype on the PC
Move to handheld device as a final step

OpenGL ES 2.0 Emulator

Contact devrel@amd.com for more
information

PowerVR also provides an emulator and
SDK:

http://www.powervrinsider.com

Render Monkey – OpenGL ES
2.0 Support

What is RenderMonkey?

Shader Development Environment
Rapid Prototyping of Shader Effects

Multiple Shading Languages
OpenGL ES Shading Language
OpenGL Shading Language
DirectX HLSL
DirectX Assembler

RenderMonkey – Why use it?

Full IDE for shader effect development
Programmer and artist view for rapid iteration

Easy integration into game pipeline
Plug-in SDK for custom import/export

Effects, models, textures, variables, etc.
Support for many standard formats

DDS, BMP, TGA, X, OBJ, 3DS, FX

Encompasses all effect resources
Render state, texture state, variables, render
targets, textures, models, etc…

RenderMonkey – What’s
new?

Support for OpenGL ES 2.0
ES Shading Language v1.00
ES syntax highlighting
ES render/sampler states
Large suite of ES examples
User editable vertex attribute names

RenderMonkey – What is
Different with ES Shaders?
Generic vertex attributes
User varyings

RenderMonkey – What is
Different with ES Shaders?
Most built-in uniforms removed

e.g. gl_ModelViewMatrix
RenderMonkey provides equivalent user named
uniforms

Default precision qualifier required for FS
Various limitations:

Loop constructs
Relative addressing

Extension enabling with #extension:
3D Textures, derivatives

RenderMonkey – What is
Different with ES Effects?

Reduced render state
Alpha test must be done with discard
No polygon fill mode
No fixed-function state: fog, point size, etc.

Reduced sampler state
Less texture wrap modes
No fixed-function LOD bias
No texture border color

RenderMonkey - Demo

OpenGL ES 2.0 – 3D Engine
Case Study

Sushi Demo Engine

AMD’s Demo Engine
Support for:

DX9
DX10
OpenGL
OpenGL ES 2.0

Key Challenges

Designing an engine to target multiple
APIs with different feature sets
Designing a shader-based engine
Platform compatibility

Large variance in handheld platform
capabilities
Limitations make portability a challenge

Abstracting the Graphics API

Challenge: what level to abstract the 3D
API?

Support all features of all APIs?
Support common set of features?
How to handle different shading languages?

State of the APIs - 2005

OGLOGLDX9DX9

AA Lines/Points
Edge Flags
Polygon Fill Modes
Texture borders
Two-side polygons
…

Common Features10.10.10 vertex data
FP16 vertex data
Multisample RT’s
R/RG texture formats
…

•In 2005, we abstracted the DX9 feature set.
•We used extensions to support missing features in OpenGL.

State of the APIs - 2007
OES2OES2

OGLOGL

DX10DX10

DX9DX9

•The choice is no longer so easy.
•Especially if you add game consoles to the mix…

Abstracting the API – How We
Decided

Driven by requirements:
Demos must use the latest features of all
APIs
Exposing the lowest-common denominator
not an option

Running the same demo on each API not
a requirement
Let content drive the feature set rather
than the API abstraction

Abstracting the API – What
We Did

Our API abstraction looks a lot like DX10
Resources
Views
Geometry Shaders
Stream Out
All the latest and greatest features…

Each API implementation supports a
subset of these features

API Abstraction – Fallback
Paths

Demo Engine is based off a scripting
system using Lua
Lua script provides fallback rendering
paths.
Trade off: High end features vs. Content
portability

For Sushi, this was a fair tradeoff to make
It might not be for you…

Sushi - Effect System

Encapsulate essential information about
rendering techniques
Essential part of shader-based engine

Develop our own?
Use someone else’s?

Microsoft .FX
COLLADA FX
CgFX

At the time, no existing solution fully fit
our requirements

Sushi – Effect System Goals

Multiple API / Shading Language Support
HLSL, GLSL, ES SL

Flexible support for advanced rendering
techniques

The effect system is the foundation that all
the demos are built on

Sushi Effects – Cross-API
Effect System

Expresses the following data:
Shaders
Render State
Passes
Techniques
Variable Bindings

Similar to Microsoft .FX, but multiple API
support

Shader Authoring

Many of our shaders authored in HLSL
Needed a way to convert to:

OpenGL Shading Language
OpenGL ES Shading Lanauge

Wrote a tool for this purpose:
HLSL2GLSL

HLSL2GLSL

Command-line tool and library
Converts SM 3.0 HLSL shaders to:

GLSL v1.10.59 shaders
ES SL v1.00 shaders

Open-source:
http://sourceforge.net/projects/hlsl2glsl
Very flexible BSD license

Sushi – Platform Portability

Handheld platforms have many
constraints:

Examples:
No Standard Template Library
No C++ Exceptions
Manual Cleanup Stack
Incomplete Standard Libraries
Limited Memory Footprint
No Floating Point Unit

Sushi - Portability

Standard abstraction layers
Math, I/O, Memory, Window, etc.

Custom template classes
Lists, vectors, maps, etc.

Constrained use of C++
No exceptions
No STL

Summary

Tools
OpenGL ES 2.0 Emulator
RenderMonkey w/ OES 2.0 Support

OpenGL ES 2.0 3D Engine Case Study
Graphics API Abstraction
Effects System
Portability

Questions?
dan.ginsburg@amd.com

