Game Developers Conference®. =
March 23-27, 2009 | Moscone Center,

003.01E 0

SAAIERE AL TR e R TR AARE B8 S0 A
PO ABORE PRETTY S CROL SIEINS T A5 A &

g= M X K

The PlayStation®3's SPUs
in the Real World

A KILLZONE 2 Case Study

Michiel van der Leeuw

Technical Director - Guerrilla Games

003. KD

8
s

-

TAKEAWAY

e Cool stuff you can do on SPUs

* Things that worked or didn't work for us

* Practical advice on approaching your SPUs
e Some food for thought

KILLZONE 2

Announced E3 2005
Preproduction until end 2006
Production until end 2008

18 months Full Production

140 Guerrilla Games Staff
50 Sony Staff

27 Programmers

003. > K= 0

SPUs OVERVIEW

e 6 x 3.2GHz of processing power
e Complete instruction set, general purpose

o 256K embedded memory per SPU
* No instruction or data cache!

e Very fast DMA in/out

* Libraries for scheduling

PLEASE MAKE A STLECTON 001 @

KILLZONE 2 SPU USAGE

003. M K

=
=
<]

-

KILLZONE 2 SPU USAGE

e Animation e Scene graph
e Al Threat prediction e Display list building
e Al Line of fire e |[BL Light probes
e Al Obstacle avoidance * Graphics post-processing
e (Collision detection e Dynamic music system
* Physics e Skinning
* Particle simulation MP3 Decompression
* Particle rendering Edge Zlib
o etc.

44 Job types

Killzone 2 - SPU usage in cut scene

SPUs in

GRAPHICS

003. M ED

002. 2

DISPLAYLIST BUILDING

r * Entire rendering engine is data-driven
e Nocallstovirtual void Draw ()

e All objects keep MeshInstanceTree up-to-date

e Lightweight data structure
 Nodes describe:
e Mesh hierarchy
e LOD selection rules
 Visibility filtering (15t person shadow...)

ﬁ e | eafs describe:

* Renderstate
 Primitive info (vertex arrays, etc.)

* PPU hands view and projection matrix to SPU job

LIGHT PROBE SAMPLING

003. KD

e, * Purpose: Make dynamic objects blend in with
environment

o ~ 2500 static light probes per level
 Created offline during lightmap rendering
e Stored as 9x3 Spherical Harmonics in KD-tree

e When object requires Image-Based Lighting (IBL)
e Ajobis added to sample lighting for that object
 Finds four closest light probes in KD-tree
* |Interpolates linearly using inverse-distance weights
e Rotates into view space
* Create 8x8 spherical mapped texture for sampling

IBL Placement

|y Y
" ™ “)

7
- i
.
- ;
" -
5 -
' -
-
1
»
et S —

IBL Placement

IBL Placement

IBL Samples around Sev (a dynamically lit object)

IBL Samples Texture maps

Intepolated IBL at Sev's position

S

Many dynamic objects, white test IBL, no textures

...add IBL sampling and sunlight

...add textures

003. M D

002, 2

PARTICLE SIMULATION

e We're quite particle heavy, per 30 Hz frame:
e ~ 250 particle systems simulated
e ~ 3000 particles updated
e ~150 systems drawn
e ~ 200 collision ray casts (w/ Havok)

 Difficult to optimize for multi-core
 System had grown feature-heavy over time
« Had to refactor in-place, incremental steps
« Code was quite optimized, but generic C++
e Memory accesses all over the place

PUEASE MAKE A STLECTON 001 @

D

003.

PARTICLE SIMULATION

e System was refactored for SPUs in three steps

 Vertex generation (41 month)

 Particle simulation inner loop (2 months)
e |nitialization and deletion of particles (43 months)
 High-level management / glue (44 months)

e Everything now done on SPUs except
 Updating global scene graph
e Starting & stopping sounds

e We learned a lot from porting the high-level code!

PUEASE MAKE A SLECTON 001 @

CODE STYLE DIFFERENCE

003. M D

ki PPU Version SPU Version
4 * Single-threaded ®* Heavily parallel
* Malloc & free * Linear memory block
e Pointers to objects * Embedded objects
e Input control curves * Sampled lookup tables
e Raycasts during update * Queues raycast jobs
e ~20ms update on PPU * <1ms update on PPU

* ~15ms update on SPUs

20x Faster on PPU!
Incredible amount of work b

GFX POST-PROCESSING

ot e Effects done on SPU
 Motion blur
 Depth of field
 Bloom

e SPUs assist the RSX with post-processing
e RSX prepares low-res image buffers in XDR
e Then triggers interrupt to start SPUs
e SPUs perform image operations
e RSX already starts on next frame
 Results processed by RSX in next frame

* Improved version in PlayStation®Edge 1.1!

POST-PROCESSING GENERAL

RSX Time | SPU Time | Quality |
RSX | 20%_ O%_ Medium_
RSX + 5 SPUs 129

e Comparison
e @ 30 Hz

e SPUs are compute-bound
« Bandwidth not a problem
e Code can be optimized further

e Qur trade-of RSX vs. SPU time
e SPUs take longer
e But SPUs look better
e And RSX was our bottleneck

PLEASE MAKE A STUECTON 001 @

o
)
><
=
()
(@)
(0]
E
(Vg
(b
-
-
()
g
-
(0]
-)
O
e
-
Q.
=

Image generated on the SPUs (bloom, DoF, motion blur)

Composited image

003. > K0

002. K2

y

BLOOM + ILR

e Takes roughly 2.6% of five SPUs

e SPUs do

 Depth-dependent intensity response curve
 Hierarchical 7x7 gaussian blur (16 bit fixed point)
 Upscaling results from different levels

 |Internal Lens Reflection (inspired by Masaki Kawase)
 Accumulating into results buffer

PUEASE MART A STLECTON 001 @

Bloom + ILR Combined

MOTION BLUR

¥ L

Takes roughly 1.9% of five SPUs

Input
 Quarter-res image from deferred renderer
e Sixteenth-res 2D motion vector stored as u8u8

Steps:
 Blur motion vectors (dilation)
e Then blur image along motion vectors
e SPU version does 8-tap point sampled
e Combine blurred image with source
 Use motion vector amplitude as alpha

Low-motion areas are unaffected (alpha = 0)

MOTION BLUR

» Picture of scene
» Picture of motion vectors
» Image transition

GDC

Placeholder

D

003.

002. K2

DEPTH OF FIELD

r e Takes roughly 4.6% of five SPUs

* |nput
 Quarter-res image from deferred renderer
 Quarter-res depth buffer

e Convert depth buffer to 'fuzzy buffer'
 O=In, 1=0ut of focus

e Samples image in floating point
36 jittered disc point samples
« Weighted by data from fuzziness buffer
« Normalized by sum of fuzziness

DEPTH OF FIELD

» Picture of scene
» Picture of blurry bits
» Image transition

GDC

Placeholder

SPUs in

GAME CODE

ANIMATION SAMPLING

003. M D

e e Using Edge Animation (in PS3 SDK)

e Our extensions for IK, look-at controller, etc.

e Time per frame
e 450 animation jobs
e 4$500 animations sampled
e Less than 2,5% SPU time on five SPUs
e Was ~20% PPU time with our old code!

* High-level animation logic still too heavy

Edge Animation Is Fast!

PUEASE MAKE A STLECTON 001 @

SPUs in

ARTIFICIAL INTELLIGENCE

WAYPOINT COVER MAPS

e Killzone 2's cover maps are waypoint-based
« Each waypoint has a depth cubemap
 Allows line-of-fire checks between waypoints
 This is how the Al understands the environment

e Suitable for SPUs
e Small data size (compressed cubemaps)
e Very compute-heavy
 Can stream waypoint data easily

PLEASE MAKE A STLECTON 001 @

wal & 25m
wal n drecton @ ¢

Link type: UsaSpecaiObject
Usable object name: PATH_FAC _VAULT 04

Use location: mount

' /) B
& BR . e = -~\.. : : / co

»
»-

1 o HPS \ = 3% & ;,f_ \.-

Waypoint cover map

wal @2 1

wal ndrecton @@ 4 4
Link type: UseSpecalObject

Usable object name: Path_TowardsDamGarzat
Use locaton: mount

_VAULT 01

L SyRsnd AR RaS Rt Otect
L en bt gl to@a PG D Entryd
Al oGS mount

Waypoint cover map

D

THREAT PREDICTION

003.

002,

r e Example: You hide behind cover
e Result: Al searches for you, suppressive fire...
5t HOW? (Killzone Al doesn't cheat! - that much)

e Al remember time and waypoint of last contact
« Mark waypoints where threat could move to
* |f waypoints are visible then remove from list
e j.e.you can see waypoints and threat's not there!
* |f waypoint list grows too long, then stop expanding

 |f threat's predicted position is a small set then
e Based on how Al's brain is configured...
e ..attack position or investigate possible location

Link type: UsaSpecialObject
Usable object name: PATH_RAPPEL 5
Use location: mount

Link type: UseSpecalObject
Usable object name: PATH_TUNNEL_DROP_03
Use location: mount

Threat Prediction using SPUs and cover maps

Encounter between enemy and friendly

Player enters cover position

Possible Player

Player might Hiding Spots

re-appear here

A-//I
g A
” Y
/ &
I/ ;

/7"_: / /"' £ o s \
e - P Enemy can’t see these \
,/ _\ " i/ two waypoints

\ .

Player enters cover position

Enemy looking for player

003. M E)

v

LINE OF FIRE

* Problem: Al running into each other’s line-of-fire
o Solution: Line of fire annotations

e Each Al agent publishes ‘hints’
 Calculate which waypoints may be in my line of fire
 Published as ‘advice’ for other entities
« Most Al tasks use this advice in path planning

e SPU does lots many tests
 Each line-of-fire against each waypoint link
« Both LoF and links are tapered-capsules

foe

les engaging a

Two friendl

.

> o g 30
Camera: (89.96 133,64 19.69), FOV /12 S
Player: (95.23 122.94 13.25), speed: 0.00 mis, bt

\ Bstrrpled ats " ‘ ,’m e ':'.. ol 1 ‘.'. o "/-, ol 35 i ;:_
- . 4 ¥ 4 g - ’ »

-~
o -

[Al Atmosphere]

Capsule indicate Line of Fire

e

d links to not d

ing on re

: Avoid stand

Safety first

PUTTING IT ALL TOGETHER

SCHEDULING

r e Almost all SPU code we have are Jobs
 Many different job managers (middleware)
« Managed by own high-level job manager
 Manages the other job managers / workloads
« Not much more than a container for all job queues
« Easy to write your own, or grab somebody else’s

* High-level scheduling hardcoded in main loop
 Use barriers, mutexes and semaphores sensibly
 Could use generalization, but good enough for now

* None of this is rocket science, just work

A FRAME IN THE LIFE OF...

PPU THREAD

SPU JOBS

RSX PUSHBUFFER

| I

LEGEND
Audio " Particle update Forward display list
| System, unzip, etc. " | Particle vertices B Lighting display list
B Havok Physics B skinning B shadowmap scene graph
| Al Jobs B Main scene graph " |Shadowmap display list
B Animation B Main display list " | Post-processing

Ray casts B 1BL Sampling

LESSONS LEARNED

)!I-_':u

002,

[~

WHAT WE DID (WRONG)

o We started off re-writing a lot of stuff for SPUs
e Special SPU versions of code
 Minimalistic, mirrored equivalents of old structures

* Huge amount of code and data duplication
* Difficult to develop, maintain and debug
« Massive waste of time! Reverted it all!

e | earned how bloated our data structures were
 And how lean they could be

003. M K

v

WHAT WE DID (RIGHT)

* All header files cross compile for PPU and SPU
« Many data structures simplified and ‘lowered’
e Low-level code is cross-platform inline in headers

e Code and data structures shared
e DMA high-level engine classes to SPU and back
e Use C++ templates in SPU code

e We try to treat them as generic CPUs and spend our time
making generic optimizations, debugging tools, etc.

RECOMMENDATIONS

003. M K

=
Lo
<]

-

INVEST IN THE FUTURE

* The future is memory-local and excessively parallel
e SPUs are just one of these 'new architectures'

e Optimize for the concept, not the implementation

e Keep code portable, maintain only one version

o Keep time in schedule for parallelization of code

D

003.

TREAT CPU POWER AS A CLUSTER

e Many separate equal resources

e Think in workloads / jobs

e Build latency into algorithms

e Favor computation-intensive code

e Avoid random memory accesses, globals

003. KD

002. K2

DON'T OPTIMIZE TOO MUCH

e Blocking DMA equals L2 cache miss penalty

e Most important is that your algorithms scale

e Optimizations make your code unmaintainable
e You can always low-level optimize later

003. M K

002. K2

AVOID RE-WRITING SYSTEMS

e Refactoring is often good enough

e Refactor in incremental steps, in-place
e Don't try to port your spaghetti code

e QOvershoot and you might fail

003. KD

RECOMMENDATIONS

1. Invest in the Future

2. Treat Your CPU Power as a Cluster
3. Don’t Optimize Too Much

4. Avoid Re-Writing Complete Systems

003. DD

g= 1 X I

Thank You for Listening
Any Questions?

