You've been logged out of GDC Vault since the maximum users allowed for this account has been reached. To access Members Only content on GDC Vault, please log out of GDC Vault from the computer which last accessed this account.

Click here to find out about GDC Vault Membership options for more users.

close

Session Name:

Multi-Agent Reinforcement Learning with 'Roller Champions'

Overview:

Sports video games like Roller Champions usually require more-advanced AI teammates with real-time strategic collaboration, and more complex and realistic agent interactions. In this context, it is essential to elaborate on less predictable behaviors closer to human actions to keep the player's interest and immersion. This talk aims to unveil the multiple challenges facing the introduction of deep reinforcement learning (Deep RL) in a real-world game production that must deliver high-end results in a multi-player environment where agents must effectively collaborate with real players. Eva Raggini, Machine Learning Programmer at Ubisoft, will show how the team achieved the modeling of multiple complex behaviors using multi-agent reinforcement learning (MARL), how they overcame a range of difficulties within complex training environments, their approach to handling collaboration between agents and players, and why they incorporated changes in the production workflow to rely more heavily on machine learning inference.

Did you know free users get access to 30% of content from the last 2 years?


Get your team full access to the most up to date GDC content

  • Game Developers Conference 2023
  • Eva Raggini
  • Ubisoft
  • free content
  • Design
  • Design
  • Programming
  • Programming